PREFACE

This book is intended for students of mathematics, physics, and engineer-
ing at the advanced undergraduate level or beyond. It is primarily a text for a
course at the advanced undergraduate level, but I hope it will also be useful as a
reference for people who have taken such a course and continue to use Fourier
analysis in their later work. The reader is presumed to have (i) a solid back-
ground in calculus of one and several variables, (ii) knowledge of the elementary
theory of linear ordinary differential equations (i.e., how to solve first-order linear
equations and second-order ones with constant coefficients), and (iii) an acquain-
tance with the complex number system and the complex exponential function
¥tV = ¢*(cosy + isin ¥). In addition, the theory of analytic functions (power
series, contour integrals, etc.) is used to a slight extent in Chapters 5, 6, 7, and 9
and in a serious way in Sections 8.2, 8.4, 8.6, 10.3, and 10.4. I have written the
book so that lack of knowledge of complex analysis is not a serious impediment;
at the same time, for the benefit of those who do know the subject, it would be a
shame not to use it when it arises naturally. (In particular, the Laplace transform
without analytic functions is like Popeye without his spinach.) At any rate, the
facts from complex analysis that are used here are summarized in Appendix 2.

The subject of this book is the whole circle of ideas that includes Fourier
series, Fourier and Laplace transforms, and eigenfunction expansions for differ-
ential operators. I have tried to steer a middle course, between the mathematics-
for-engineers type of book, in which Fourier methods are treated merely as a tool
for solving applied problems, and the advanced theoretical treatments aimed at
pure mathematicians. Since I thereby hope to please both the pure and the ap-
plied factions but run the risk of pleasing neither, I should give some explanation
of what I am trying to do and why I am trying to do it.

First, this book deals almost exclusively with those aspects of Fourier analysis
that are useful in physics and engineering rather than those of interest only in
pure mathematics. On the other hand, it is a book on applicable mathematics
rather than applied mathematics: the principal role of the physical applications
herein is to illustrate and illuminate the mathematics, not the other way around.
I have refrained from including many applications whose principal conceptual
content comes from Subject X rather than Fourier analysis, or whose appreciation
requires specialized knowledge from Subject X; such things belong more properly
in a book on Subject X where the background can be more fully explained. (Many
of my favorite applications come from quantum physics, but in accordance with
this principle I have mentioned them only briefly.) Similarly, I have not worried
too much about the physical details of the applications studied here. For example,
when I think about the 1-dimensional heat equation I usually envision a long thin
rod, but one who prefers to envision a 3-dimensional slab whose temperature
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vi Preface

Second, there is the question of how much emphasis to lay on the theoretical
aspects of the subject as opposed to problem-solving techniques. I firmly believe
that theory — meaning the study of the ideas underlying the subject and the
reasoning behind the techniques — is of intellectual value to everyone, applied or
pure. On the other hand, I do not take “theory” to be synonymous with “logical
rigor.” I have presented complete proofs of the theorems when it is not too
onerous to do so, but I often merely sketch the technical parts of an argument.
(If the technicalities cannot easily be filled in by someone who is conversant
with such things, I usually give a reference to a complete proof elsewhere.) Of
course, where to draw the line is a matter of judgment, and I suppose nobody will
be wholly satisfied with my choices. But those instructors who wish to include
more details in their lectures are free to do so, and readers who tire of a formal
argument have only to skip to the end-of-proof sign B Thus, the book should be
fairly flexible with regard to the level of rigor its users wish to adopt.

One feature of the theoretical aspect of this book deserves special mention.
The development of Lebesgue integration and functional analysis in the period
1900~1950 has led to enormous advances in our understanding of the concepts
underlying Fourier analysis. For example, the completeness of L? and the shift
from pointwise convergence t0 norm CONVEIEEnce or weak convergence simplifies

much of the discussion of orthonormal bases and the validity of series expansions.

These advances have usually not found their way into application-oriented books
because a rigorous development of them necessitates the building of too much
machinery. However, most of this machinery can be ignored if one is willing to
take a few things on faith, as one takes the intermediate value theorem on faith in
freshman calculus. Accordingly, in §3.3—4 I assert the existence of an improved
theory of integration, the Lebesgue integral, in the context of which one has
(i) the completeness of L2, (ii) the fact that “nice” functions are dense in 12,
and (iii) the dominated convergence theorem. I then proceed to use these facts
without further ado. (The dominated convergence theorem, it should be noted,
is a wonderful tool even in the context of Riemann integrable functions.) Later,
in Chapter 9, I develop the theory of distributions as linear functionals on test
functions, the motivation being that the value of a distribution on a test function
is a smeared-out version of the value of a function at a point. Discussion of
functional-analytic technicalities (which are largely irrelevant at the elementary
level) is reduced to a minimum.

With the exception of the prerequisites and the facts about Lebesgue integra-
tion mentioned above, this book is more or less logically self-contained. However,
certain assertions made early in the book are established only much later:

(i) The completeness of the eigenfunctions of regular Sturm-Liouville problems
is stated in §3.5 and proved, in the case of separated boundary conditions,

in §10.3.

(ii) The asymptotic formulas fof Bessel functions given in §5.3 are proved via

Watson’s lemma in §8.6.

(iii) The proofs of completeness of Legendre, Hermite, and Laguerre polynomials
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inversion theorem, proved in Chapter 7.
{(iv) The discussion of weak solutions of differential equations in §9.5 justifies
many of the formal calculations with infinite series in the earlier chapters.
Thus, among the applications of the material in the later part of the book is the
completion of the theory developed in the earlier part.
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CHAPTER DEPENDENCE DIAGRAM

_ The main dependences among the chapters are indicated in the accompany-
ing diagram, but a couple of additional comments are in order.

First, there are some minor dependences that are not shown in the diagram.
For example, a few paragraphs of text and a few exercises in Sections 6.3, 7.5,
8.1, and 8.6 presuppose a knowledge of Bessel functions, but one can simply omit
jrhese bits if one has not covered Chapter 5. Also, the discussion of techniques
in §4.1 is relevant to the applied problems in later chapters, particularly in §5.5.

Second, although Chapter 10 depends on Chapter 9, except in §10.2 the
only ;?art of distribution theory needed in Chapter 10 is an appreciation of delta
functlons on the real line and the way they arise in derivatives of functions with
jump discongtinuities. Hence, one could cover Sections 10.1 and 10.3~4 after an
informal discussion of the delta function, without going through Chapter 9.

There is enough material in this book for a full-year course, but one can also
select various subsets of it to make shorter courses. For a one-term course one
could cover Chapters 1-3 and then select topics ad libitum from Chapters 4~7.
(If one wishes to present some applications of Bessel functions without discussing
the theory in detail, one could skip from the recurrence formulas in §5.2 to the
statement of Theorem 5.3 at the end of §5.4 without much loss of continuity.) 1
?ave taught a one-quarter (ten-week) course from Chapters 15 and a sequel to
it from Chapters 7-10, omitting a few items here and there.

One further point that instructors should keep in mind is the following. Most
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places where concepts of a more general and abstract nature are discussed ina
serious way: Chapter 3 (L? spaces, orthogonal bases, Sturm-Liouville problems)
and Chapter 9 (functions as linear functionals, generalized functions). These
parts are likely to be difficult for students who have had little experience with
abstract mathematics, and instructors should plan their courses accordingly.

Fourier analysis and its allied subjects comprise an enormous amount of
mathematics, about which there is much more to be said than is included in this
book. I hope that my readers will find this fact exciting rather than dismaying.
Accordingly, I have included a sizable although not exhaustive bibliography of
books and papers to which the reader can refer for more information on things
that are touched on lightly here. Most of these references should be reasonably
accessible to the students for whom this book is primarily intended, but a few of
them are of a considerably more advanced nature. This is inevitable; the topics in
this book impinge on a lot of sophisticated material, and the full story on some
of the things discussed here (singular Sturm-Liouville problems, for instance)
cannot be told without going to a deeper level. But these advanced references
should be of use to those who have the necessary background, and may at least
serve as signposts to those who have yet to acquire it.

I am grateful to my colleagues Donald Marshall, Douglas Lind, Richard Bass,
and James Morrow and to the students in our classes for pointing out many mis-
takes in the first draft of this book and suggesting a number of improvements.
I also wish to thank the following reviewers for their helpful suggestions in re-
vising the manuscript: Giles Auchmuty, University of Houston; James Herod,
Georgia Institute of Technology; Raymond Johnson, University of Maryland;
Francis Narcowich, Texas A & M University; Juan Carlos Redondo, Univer-
sity of Michigan; Jeffrey Rauch, University of Michigan; Jesus Rodriguez, North
Carolina State University; and Michael Vogelius, Rutgers University.

Gerald B. Folland
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CHAPTER 1
OVERTURE

The subject of this book is Fourier analysis, which may be described as a collection
of related techniques for resolving general functions into sums or integrals of
simple functions or functions with certain special properties. Fourier analysis is
a powerful tool for many problems, and especially for solving various differential
equations of interest in science and engineering. The purpose of this introductory
chapter is to provide some background concerning partial differential equations.
Specifically, we introduce some of the basic equations of mathematical physics
that will provide examples and moftivation throughout the book, and we discuss
a technique for solving them that leads directly to problems in Fourier analysis,

At the outset, let us present some notations that will be used repeatedly.
The real and complex number systems will be denoted by R and C, respectively.
We shall be working with functions of one or several real variables xq,...,xn.
We shall denote the ordered n-tuple (x1,...,Xs) by x and the space of all such
ordered n-tuples by B”.

In most of the applications, # will be 1, 2, 3, or 4, and the variables x; will
denote coordinates in one, two, or three space dimensions, together with time.
In this situation we shall usually write x, y, z instead of x;, X,, x3 for the spatial
variables, and we shall denote the time variable by ¢. Moreover, we shall use the
common subscript notation for partial derivatives:

du 8%u 8%u

Uy == e

5%’ Uxx = a2 Uxy = maxay, etc.

A function f of one real variable is said to be of class C*) on an interval J
if its derivatives f7,..., f%) exist and are continuous on /. Similarly, a function
of n real variables is said to be of class C'¥) on a set D c R” if all of its partial
derivatives of order < k exist and are continuous on D. If the function possesses
continuous derivatives of all orders, it is said to be of class (),

Finally, we use the common notation with square and round brackets for
closed and open intervals in the real line R:

[a,b}={x:a<x<b}, (a,b)={x:a<x< b},
[a,b)={x:a<x<b} (@,b]={x:a<x< b}




2 Chapter 1. Overture
1.1 Some equations of mathematical physics

In order to understand the significance of the ideas as they arise, it will be useful
to have a few physical applications in mind as examples of the sort of p‘robler'ns we
are trying to solve. Accordingly, we begin with a brief and informal d}scuss1011. of
some of the basic partial differential equations of classical mathematical physics.
These equations all involve a fundamental differential operator known as the
Laplacian, which is defined as follows. If u is a function of the real variables

X1,...,%n of class C?), the Laplacian of u is the function v2y defined by
/ 2 2 2
2, 0% 0%w . 07U (1.1)
V=532 T 5% o2

The first of the equations we shall study is the wave equation:

2
Uy = %—t%{ = szzu. (12)

Here u represents a wave traveling through an n-dimensional medium—whgre, in
practice, n will usually be 1, 2, or 3. More precisely, xq,...,Xn are the_ coordinates
of a point X in the medium; ¢ is the time; ¢ is the speed of propagation of waves
in the medium; and u(x, ¢) is the amplitude of the wave at position x and time f.
The wave equation provides a reasonable mathematical model for a number

of physical processes, such as the following: '

(a) Vibrations of a stretched string, such as a guitar s-trmg. .

(b) Vibrations of a column of air, such as an organ pipe or clarinet.

(c) Vibrations of a stretched membrane, such as a drumhead.

(d) Waves in an incompressible fluid, such as water.

(e) Sound waves in air or other elastic media. .

(f) Electromagnetic waves, such as light waves and radio waves. .

The number 7 of spatial dimensions is 1 in examples (a) and (b), 2 in exapnples
(c) and (d) (since the waves appear on the surface of the water), apd 3 in ex-
amples (e) and (f). In (a), (c), and (d), u represents the transverse displacement
of the string, membrane, or fluid surface; in (b) and (e), u represents the lon-
gitudinal displacement of the air; and in (f), u is any of the components of the
electromagnetic field. o

We shall not attempt to derive the wave equation from physical principles

here, since each of the preceding examples involves different physics. Examples
(a) and (f) are explained in Appendix 1; discussions of the othf?rs may be found,
for example, in Ingard [32]* and Taylor [51]. We should point out, howc?ver,
that in most cases the derivation involves making some simplifying assumptions.
Hence, the wave equation gives only an approximate description of the actual
physical process, and the validity of the approximation will depend on whether
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certain physical conditions are satisfied. For instance, in example (a) the vibra-
tions should be small enough so that the string is not stretched beyond its limits
of elasticity. In example (f) it follows from Maxwell’s equations, the fundamen-
tal equations of electromagnetism, that the wave equation is satisfied exactly in
regions containing no electric charges or currents — but of course the assumption
of no charges or currents can only be approximately valid in the real world. (Of
course, it is precisely the fact that the wave equation is only an approximation
that allows it to be a useful model in so many different situations!)
The next basic differential equation on our list is the heat equation:

ur = kv2u. (1.3)

This equation describes the diffusion of thermal energy in a homogeneous mate-
rial (that is, one whose composition does not change from point to point). As in
the wave equation, the variables x; are spatial coordinates and ¢ is time, but now
u(x, t) is the temperature at a position x and time ¢, and k is a constant called the
“thermal diffusivity” of the material. A brief derivation is given in Appendix 1.
As for the number of spatial variables, the case » = 3 is the most fundamental
from the physical point of view, but the cases n = 1 and »n = 2 are also of in-
terest as models of situations where the heat flow is practically all in one or two
directions. For example, the heat equation with 7 = 1 can be used to describe
heat flow along a wire or rod, provided that heat flow in directions perpendicular
to the axis of the rod can be neglected. It can also be used to describe heat flow
in a slab of material, such as a wall separating two rooms, where only the heat
flow from one room toward the other (as opposed to flow in directions parallel
to the wall) is significant.

Two warnings: (i) The heat equation can be used to model heat flow in both
solids and fluids (liquids and gases), but in the latter case it does not take any
account of the phenomenon of convection; that is, it will provide a reasonable
model only if conditions are such as to exclude any macroscopic currents in the
fluid. (ii) The heat equation is not a fundamental law of physics, and it does not
give reliable answers at very low or very high temperatures. In particular, it is
obvious that if u is a solution then so is u + ¢ for any constant ¢; thus the heat
equation does not recognize the existence of absolute zero!

The heat equation can also be used to model other diffusion processes. For
example, if a drop of red dye is placed in a body of water, the dye will gradually
spread out and permeate the entire body. If convection effects are negligible,
equation (1.3) will describe the diffusion of the dye through the water (u(x,1)
now being the concentration of dye at position x and time f).

Next, we come to the Laplace equation:

Viu=0. (1.4)

Laplace’s equation arises in a number of different contexts. It is satisfied by the
electrostatic potential in any region containing no electric charge, and by the grav-
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governs standing waves and steady-state heat distributions - that is, §olut1ons
of the wave equation and the heat equation that are independent of time. We
shall meet other applications of it later on. ‘

Partial differential equations such as the ones discussed above typlcqlly have
solutions in such great abundance that there is no reasonable way Aof giving an
explicit description of all of them. The most common way of pinning down
a particular solution is to impose some boundary conditions. _ Dlﬁ'erent types of
differential equations require different types of boundary conditions, aqd the par-
ticular conditions that are appropriate for a given physical problem will dgpend
on the particular physical situation. The physics is generally a good guide t?,
the mathematics: “reasonable” physical conditions usually lead to “reasonable

mathematical problems.

FiGURE 1.1. The region D in x-space and the region D in xt-space.

These matters may best be explained by examining a few examples._ Let_ us
consider the heat equation: suppose we are interested in studying the dlﬁ"u§19n
of heat in a body that occupies a bounded region D of x-space, given the 1m‘_¢1al
temperature distribution in the body. That is, we wish to solve the heat equation
(1.3) in the region

D:{(x,z):xeD, t>0}
of (x,t)-space subject to the initial condition
u(x,0) = f(x), (1.5)

where f(x) is the temperature distribution at time ¢ = 0. (See Figure 1.1.) Equa-
tion (1.5) is a condition on u on the “horizontal” part of the boundary qf ’D,
but it is not enough to specify u completely; we also need a boundary condmop
on the “vertical” part of the boundary to tell what happens to the hf:at when it
reaches the boundary surface S of the spatial region D. Here the par_tlcu%ar phys-
ical conditions at hand must be our guide. One reasonable assumption 1s the}t )
is held at a constant temperature 1y (for example, by immersing the body in a
bath of ice water), thus:

~ ~ LN 1 LY
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Another reasonable assumption is that D is insulated, so that no heat can flow in
or out across S. Mathematically, this amounts to requiring the normal derivative
of u along the boundary S to vanish;

(Vu-n)(x,) =0 forxesS, t>0. (1.7

Here Vu is the gradient of ¥ in x and n is the unit outward normal vector to S
(and we are implicitly assuming that the surface § is smooth, so that n is well-
defined). A more realistic assumption than either (1.6) or (1.7) is that the region
outside D is held at a constant temperature g, and the rate of heat flow across
the boundary § is proportional to the difference in temperatures on the two sides:

(Vu~n)(x,t)+a(u(x,t)—u0> =0 forxesS, t>0. (1.8)

This is Newton’s law of cooling, and a > 0 is the proportionality constant. The
conditions (1.6) and (1.7) may be regarded as the limiting cases of (1.8) as @ — oo
ora— Q.

At any rate, it turns out that the initial condition (1.5) together with any one
of the boundary conditions (1.6), (1.7), or (1.8) leads to a well-posed problem: one
having a unique solution that depends continuously (in some appropriate sense)
on the initial data f. The same discussion is also valid for the heat equation in
one or two space dimensions. (In one space dimension, the “region” D is just an
interval in the x-axis, and the “normal derivative” Vu - n is just u, at the right
endpoint and —uy at the left endpoint.) .

A similar analysis applies to boundary value problems for the wave equation
(1.2), with one significant difference: the wave equation is second-order in the
time variable ¢, whereas the heat equation is only first-order in . For this reason,
in solving the wave equation it is appropriate to specify not only the initial values
of u as in (1.5) but also the initial velocity u;:

u(x,0) = f(x), ur(x,0) = g(x) forxeD. (1.9

The imposition of the initial conditions (1.9) together with a boundary condition
of the form (1.6), (1.7), or (1.8) leads to a unique solution of the wave equation.
For example, to analyze the motion of a vibrating string of length / that is fixed at
both endpoints, we take the “region” D to be the interval [0, /] on the x-axis and
solve the one-dimensional wave equation with boundary conditions (1.6) (where
ug =0) and (1.9):

U = Cixx, w(x,0) = flx) and u;(x,0)=g(x) forO0<x<l,
w0, ) =u(l,t) =0 fort>0.
Remark: The “velocity” u; is not the same as the constant ¢ in the wave

equation. c¢ is the speed of propagation of the wave along the string, whereas u;
is the rate of change of the displacement of a particular point on the string. (The
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The Laplace equation (1.4) is of a rather different character, as it does not
involve time. The most important boundary value problem for this equation, the
so-called Dirichlet problem, consists in specifying the values of # on the boundary
of the region in question. That is, we solve v2y = 0 in a region D subject to the
condition that u agrees with a given function f on the boundary S of D. This
is a well-posed problem when D is bounded and § is smooth (except perhaps
for corners and edges). Another useful boundary value problem for Laplace’s
equation is the Neumann problem, which consists of specifying the values of the
normal derivative Vu-non S:

V2y=0inD, (Vu-m)(x)=g(x) forxes.

Here we do not quite have uniqueness, for if u is a solution, then so is # + C
for any constant C. Moreover, the boundary data g must satisfy the condition
[Js & =0 in order for a solution to exist, because by the divergence theorem,

//S(Vu:n)d.5’=/_//uvzudV=O

for any u such that V2u = 0. However, there are no other obstructions to existence
and uniqueness; and since there is only one constant to be specified to obtain
uniqueness, and only one linear equation to be satisfied to obtain existence, the
Neumann problem is still regarded as well behaved.

There is one more point that should be mentioned in connection with the in-
terpretation of boundary conditions. Suppose, for example, that we are interested
in the initial value problem for the heat equation:

u=kViu fort>0, u(x0) = f(x).

If one interprets this absolutely literally, one obtains a solution by defining u(x, t)
to be f(x) when ¢ = 0 and 0 when ¢ > 0, but clearly this is not what is really
wanted unless f is identically zero! Rather, in such boundary value problems
there is always an implicit continuity assumption: we ask not only that u(x,0) =
f(x) but that u(x, ) should approach f(x) as ¢ — 0. The precise way in which
this approach is achieved (pointwise convergence, uniform convergence, mean
square convergence, etc.) will depend on the particular problem at hand. This is
not a matter that requires a lot of deep thought — merely a little care to avoid
making silly mistakes.

The wave, heat, and Laplace equations can be generalized by adding in an
extra term, as follows:

syt — 2V = F(x,1), (1.10)
us — kVu = F(x,1), (1.11)
© Viu=F(x). (1.12)

These equations are called the inhomogeneous wave, heat, and Laplace equations;

4 amy o % at . WS cnndfan BT mmn T de a $hrcantimn that
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is gi}fen in advance, and the original equations (1.2), (1.3), and (1.4) are the
s?ecgl cases where F = 0. The interpretation of F will vary with the particular
§1tuap9n considered. In the wave equation (1.10), F may represent a force that
is driving the waves; in the case of electromagnetic fields, it represents the effect
of charges or currents (see Appendix 1). In the heat equation (1.11), F may
reprgsent a source (or sink) of heat within the material in which the heat is
ﬂov.vmg. The Poisson equation (1.12) is satisfied by electrostatic potential in a
region w-hen F is interpreted as ~4z times the charge density in the region, or by
the gravitational potential when F is interpreted as 4x times the mass density.
(See Appendix 1. The difference in signs occurs because positive masses attract
each othex", whereas positive charges repel.) The boundary conditions appropriate
for these inhomogeneous equations are much the same as for the corresponding
homogeneous equations.

I:’inally, we mention one other basic equation of physics, the Schrédinger
equation :

2

h
huy = —mvzu + V(x)u.

In this t;qua.tion u is the quantum-mechanical wave function for a particle of mass
m moving in a potential V' (x), & is Planck’s constant, and i = +/—1. When the
particle has a definite energy E, the time dependence drops out and one obtains
the steady-state equation

2
——%Vzu +V(x)u= Eu.
For the physics behind these equations we refer the reader to books on guan-
tum mec.h_anics such as Messiah [39] and Landau-Lifshitz [35]. Readers who are
not fanfnhar with this subject can safely ignore the occasional references to the
Schrodinger equation, but those who are will find the solutions to some important
special cases in later chapters.

EXERCISES

1. Show that u(x, ) = t~1/2 exp(—x2/4kt) satisfies the heat equation u; = ki
fort > 0.

2. Show that u(x,y,t) = t~!exp[—(x? + y2)/4kt] satisfies the heat equation
Up = k(uxx + uyy) for t > 0.

3. Show that u(x,y) = log(x? + »?) satisfies Laplace’s equation tiy + Uyy =0
for (x,y) # (0,0). :

4. Show that u(x,y, z) = (x* + y? + z%)~ /2 satisfies Laplace’s equation uxy +
Uyy + Uzz = 0 for (xaya Z) #* (O: O:O)'

5. Propor?ionality cpnstants in the equations of physics can often be eliminated
bya su%t‘able choice of units of measurement. Mathematically, this amounts
to rewnt{ngi the equation in terms of new variables that are constant multiples
of the original ones. Show that the substitutions 7 = k7 and 7 = ¢t reduce

the heat and wawve annatinne rasmanticaler $m 51 . $7240 cond an 2.,
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6. The object of this exercise is to derive d *Alembert’s fagmula for the general
solution of the one-dimensional wave equation gy = ¢ Uxx. .

a. Show that if u(y,z) = f(¥) + g(z) where f and g are C? functions

of one variable, then u satisfies uy; = 0. Conversely, show that every

C@ solution of uy; = 0 is of this form. (Hint: If vy = 0, then v is

independent of y.)
b. Let y = x — ¢t and z = x + ct. Use the chain rule to show that u; —

Cutxx = —4C Uyz. . )
¢. Conclude that the general C @) solution of the wave equation u;; = C Uxx
is u(x,t) = ¢(x — ct) + w(x + ct) where ¢ and y are c® functions of
one variable. (Observe that ¢(x — cf) represents a wave trjavehng to the
right with speed ¢, and y(x + ct) represents a wave traveling to the left

with speed c.)
d. Show that the solution of the initial value problem

U = Cuxx,  u(x,0)= f(x),  u(x,0)=g(x)

18 xX+ct

u(x, 0= [f0e—en+ fxren] 45 [ gdy.

x—ct

7. The voltage v and current { in an electrical cable along the x-axis satisfy the
coupled equations

ix+CU[+Gv:0, Ux+Li{+Ri:0,

where C, G, L, and R are the capacitance, (leakage) conductance, ipduc-
tance, and resistance per unit length in the cable. Show that v and i both

satisfy the telegraph equation

uxx = LCuy + (RC + LG)u, + RGu.

8. Set u(x,t) = f(x,t)e? in the telegraph equation of Exercise 7. What is thf:
differential equation satisfied by f? Show that a can be chosen so that‘thls
equation is of the form fix = Afi; + Bf (with no first-order term), provided

that LC # 0.

1.2 Linear differential operators

The partial differential equations considered in the preceding secztion can all 2be
written in the form L(u) = F, where L(u) stands for uy — ¢?V2u, U - kviu,
or V2u. In each case L(u) is a function obtained from u by performing certgm
operations involving partial derivatives, which we regard as the result of applying

1.2 Linear differential operators 9

In general, a linear partial differential operater L is an operation that trans-
forms a function u of the variables x = (x;,...,xx) into another function L(u)
given by

L) = b0 98 S Ly 0%
(u) = a(x)u + :2;:1 ,(x)b—}: + 3_; c,j(x)m +oen,
(Here the dots at the end indicate higher-order terms, but it is understood that the
whole sum contains only finitely many terms.) In other words, L(u) is obtained
by taking a finite collection of partial derivatives of u, multiplying them by the
coefficients a, b;, c;j, etc., and adding them up. We may describe the operator L
by itself, without reference to an input function u, by writing

" 8 & 82
L=a(x)+Zb,~(x)5—x—i+ Zcij(x)m+~--. (1.13)
i=1 i,j=1

The term /inear in the phrase “linear partial differential operator” refers to
the following fundamental property: if L is given by (1.13), uy,...,u; are any
functions possessing the requisite derivatives, and cy,...,c; are any constants,
then

L{ciuy + -+ cuy) = ey L(uy) + -+ + ¢, L(uy,). (1.14)

This is an immediate consequence of the fact that the derivative of a sum is the
sum of the derivatives, and the derivative of a constant multiple of a function is
the constant multiple of the derivative. Any function of the form cjuy +- - -+cpuy
(where the c;’s are constants) is called a linear combination of u;,...,u;. Thus,
(1.14) says that L takes every linear combination of u;,’s into the corresponding
linear combination of L(u;)’s. :

More generally, any operator L, differential or otherwise, that satisfies (1.14)
is called linear; here the inputs u and the outputs L(u) can be any sort of objects
for which linear combinations make sense, such as functions, vectors, numbers,
etc. For instance, the formula L(f) = [ f Sf(t)dt defines a linear operation taking
continuous functions on the interval [a, ] to numbers; and if x; is a fixed 3-
dimensional vector, the formula L(x) = x x Xq (the cross product of x with x;)
defines a linear operation on 3-dimensional vectors.

A linear partial differential equation is simply an equation of the form

L{u) = F,

where L is a linear partial differential operator and F is a function of x. Such
an equation is called homegeneous if F = 0 and inhomogeneous if F # 0. The
boundary conditions we associate to a differential equation are usually of a similar
form themselves; that is, they are of the form “B(u) = f on the boundary” where
B is another linear differential operator and f is a function on the boundary. (We
shall often omit the phrase “on the boundary” and write the boundary conditions
simply as B(u) = f. Here also, the terms homogeneous and inhomogeneous refer
to the cases /' = 0 and f s 0.) The linearity of the operators L and B can be
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The Superposition Principle. If u;,..., % satisfy the linear differential equations
L(u;) = F; and the boundary conditions B(u;) = fj for j = 1,. Lkandeg,... 0
are any constants, then u = Cjuy + -+ + Crlg satisfies

L) =cF +-+0F,  B)=ch +o o+ S

The importance of the superposition principle can hardly be overestimated.
We shall use it repeatedly in a number of different ways, of which the most
important are the following.

Suppose we want to find all solutions of a differential equation subject to
one or more boundary conditions, say

L{u)=F, Bu) = f. (1.15)
If we can find all solutions of the corresponding homogenous problem
L(u)=0, B(u)=0 (1.16)

which is often simpler to handle, then it suffices to obtain just one solution, say
v, of the original problem (1.15). Indeed, if u is any other solution of (1.15),
then w = u — v satisfies (1.16), for L(w) = F — F = 0 and B(w) = f-f=0.
Hence we obtain the general solution of (1.15) by adding the general solution w
of (1.16) to any particular solution of (1.15).

In the same spirit, the superposition principle can be used to break down a
problem involving several inhomogeneous terms into (presumably simpler) prob-
lems in which these terms are dealt with one at a time. For instance, suppose
we want to find a solution to (1.15). It suffices to find solutions u; and u, to the
problems

Lu))=F, B(u)=0

L(up) =0, B(up) =/,

for we can then take u =y + .

Perhaps most important, if uy,4,,... are any solutions to a homogeneous
differential equation L(u) = O that satisfy homogeneous boundary conditions
B(u) = 0, then any linear combination of the u;’s will satisfy the same differ-
ential equation and the same boundary conditions. Thus, starting out with a
sequence of solutions u;, we can generaie many more solutions by taking linear
combinations. If we then take appropriate limits of such linear combinations,
we arrive at solutions defined by infinite series or integrals — and this is where
things get interesting!

' Of course, there are also rionlinear differential equations involving nonlinear
operations such as L(u) = uxx — sinu or L(u) = uux + (uy)3. Indeed, many
of the important equations of physics and engineering, including most of the

1.2 Linear differential operators 11

ﬁowever, nonlinear equations are, on the whole, much more difficult to solve than
linear ones, and their study is beyond the scope of this book.

' One ﬁpal note: the reader will have observed that all the differential equa-
tions we d%scussed in §1.1 involve the Laplacian V2. The reason for this is that
the Laplacian commutes with all rigid motions of Euclidean space; that is, if &
denotes any translation or rotation of n-space, then V(f0.9) = (V2f) 0,9' for
all func.tlons f. Moreover, the only linear differential operators of order < 2 that
have jthls property are the operators aV2 + b where a and b are constants._Hence
the differential equation describing any process that is spatially symmetric (i.e ’
unaffected by translations and rotations) is likely to involve the Laplacian. )

EXERCISES

1. Suppose u; and u; are both solutions of the linear differential equation
L{u) = f, where f # 0. Under what conditions is the linear combination
€Uy + CuU; also a solution of this equation?

2. Consider the nonlinear (ordinary) differential equation #' = u(1 — u).
a. Show that u;(x) = e*/(1 + &*) and u,(x) = 1 are solutions.
b. Show that u; + u; is not a solution.
¢. For which values of ¢ is cuy a solution? How about cu,?

3. Give examples of linear differential operators L and M for which it is not
true that L(M(u)) = M(L(u)) for all 4. (Hint: At least one of L and M
must have nonconstant coefficients.)

4, What f"orm must G have for the differential equation uy; — uxx = G(x,t,u)
to be linear? Linear and homogeneous?

5. a. Showthatfor n=1,2,3,..., us(x,y) = sin(nznx)sinh(nny) satisfies
Uxx + Uyy = 0, u(0,y) =u(l,y) = u(x,0) = 0.
b. Find a linear combination of the u,’s that satisfies u(x,1) = sin 2zx -
sin 3z x.
c. Show thatforn=1,2,3,..., Un(x,y) = sin(nzx) sinh nz(1 —y) satisfies

Usx +uyy =0,  u(0,y)=u(l,y) =u(x,1)=0.

d. Find a linear combination of the %,’s that satisfies #(x,0) = 2sinnx.
€. Solve the Dirichlet problem

uxx+llyy=0, u(oay)=u(19y)=0:
u(x,0) =2sinnx, u(x,1)=sin2xx - sin3nx.
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1.3 Separation of variables

In this section we discuss a very useful technique for solving certain linear partial
differential equations, known as separation of variables. This technique works
only for very special sorts of equations, but fortunately the equations for which
it works include many of the most important ones.

The idea is as follows. Suppose, for simplicity, that we have a homogeneous
partial differential equation L(u) = 0 involving just two independent variables x
and y, with some homogeneous boundary conditions B(u) = 0. We try to find
solutions # of the form ~

u(x,y) = X(x)Y(y).

If the method is to work, when we substitute this formula for u into the equation
L(u) = 0, the terms can be rearranged so that the left side of the equation involves
only the variable x and the right side involves only the variable y, say P(x) =
Q(y). But since x and y are independent, a quantity that depends on x alone
and also on y alone must be a constant. Hence we have P(x) = C and Q(y) = C,
and these equations will be ordinary differential equations for the functions X
and Y whose product is u. With luck, these equations can be solved subject to
the boundary conditions on X and Y that are implied by the original conditions
on u, and we thus obtain a whole family of solutions by varying the constant
C. By the superposition principle, all linear combinations of these will also be
solutions; and if we are lucky, we will obtain a/l solutions of the original problem
by taking appropriate limits of these linear combinations.

The same procedure can be used for equations for functions of more than
two variables. If there are three independent variables involved, say x, y, and z,
we look for solutions u of the form

u(x,y,2) = X(x)v(y, 2).

If the variables can be separated, we obtain an ordinary differential equation
for X and a partial differential equation for v, but now involving only the two
variables y and z. We can then try to write v(y,z) = Y(¥)Z(z) and obtain
ordinary differential equations for ¥ and Z. In other words, we use separation
of variables to “peel off” the independent variables one at a time, thereby reducing
the original problem to some simpler ones.

Of course, once one has reduced the problem to some ordinary differential
equations, one must be able to solve them! For the time being all our examples
will involve homogeneous equations with real constant coefficients, whose solu-
tions we now briefly review. (See, for example, Boyce-DiPrima [10] for a more
extensive discussion.) For first-order equations the situation is very simple:

f’=aj‘” = f(x)=Ce".
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Theorem 1.1, The general solution of f' +af +bf =0is f(x) = Cie"* + Cre™*,
where ry, ry are the roots of the equation r* + ar + b = 0 and C,, C, are arbitrary
complex numbers. If r| = ry, the general solution is (C; + Cyx)e"*.

Here r; and r; may, of course, be complex; see Appendix 2 for a discussion
of the complex exponential function. In certain cases it may be more convenient
to express the solution in terms of trigonometric or hyperbolic functions. In
particular: B

(i) If ry = p+io and ry = p — io, the general solution is eP*(C;cosox +

Cysinox).

(i) If a > O, the general solution of f + o>f = 0 is C; cosax + C, sinax, and
the general solution of f" — o2 f = 0 is C; coshaxX + C, sinh ax.

Enough generalities; let us look at a couple of specific examples.

Consider the problem of 1-dimensional heat flow: we may think of a circular
metal rod of length /, insulated along its curved surface so that heat can enter or
leave only at the ends. Suppose, moreover, that both ends are held at temperature
zero. {Zero in which temperature scale? It doesn’t matter: the mathematics is
the same.) Ignoring the question of initial conditions for the moment, we then
have the boundary value problem

Ur = Kuxx, u(0,2) = u(l,t) = 0. (1.17)

If we substitute u(x, 1) = X(x)T(t) into (1.17), we obtain
X(x)T'(t) = kX" (x)T(1), (1.18)
X(0)=X({)=0. (1.19)

The variables in (1.18) may be separated by dividing both sides by kX (x)7T(z),
yielding
T'(0)kT() = X" (x)] X(x).

Now the left side depends only on ¢, whereas the right side depends only on x;
since they are equal, they must both be equal to a constant 4:

T'(t) = AkT(1),  X"(x) = AX(x).

These are simple ordinary differential equations for T and X that can be solved
by elementary methods — indeed, almost by inspection. The general solution of
the equation for 7T is

T(t) = Coe¥?,

and the general solution of the equation for X is
X(x)=Cicosix + C,ysinlx, A=+/-A (1.20)

(If A is positive, one might prefer to avoid imaginary numbers by rewriting (1.20)
as

' ’ / /
Y(xY= (T enchnuy & L einhny = Cl + Cza/“x £ C1 — Czp—,ux )
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But so far 4 is just an arbitrary (possibly complex) constant, so there is no reason
yet to choose one form over the other.) However, we must now take account of
the boundary conditions (1.19). The condition X (0) = 0 forces C; = 0 in (1.20),
and the condition X (/) = O then becomes C; sinA/ = 0. If we take C; = 0, then
our solution u(x, t) vanishes identically, which is of no interest: we are looking
for nontrivial solutions. So we take C, # 0; hence sinA/ = 0, which means that
Al = nx for some integer n; in other words, 4 = —(nn/l)2. (So A is negative
after alll) We may take n > 0, since the case n = 0 gives the zero solution and
replacing n by —n merely amounts to replacing C; by ~C.

In short, for every positive integer n we have obtained a solution ux(x, ) of
(1.17), namely,

22
in (%, 1) = €XD ( i ’“) sin % (1=1,23,..).
(We have taken Cp = C, = 1; other choices of Cy and C, give constant
multiples of #,.) We obtain more solutions by taking linear combinations of the
un’s, and then passing to infinite linear combinations — that is, infinite series

) 0 22 )
u:«.El:anun=Zanexp( n;; kt) smmltx. (1.21)
1

Of course, there are questions to be answered about the convergence of such
series, but for the moment we shall not worry about that.

Finally, we bring the initial conditions into the picture: can we solve (1.17)
subject to the initial condition u(x, 0) = f(x), where f is a given function on the
interval (0,/)? The solution (1.21) will do the job, provided that

f(x)=) apsin E—?—c. (1.22)
1

We have now arived at one of the main subjects of this book: the study of series
expansions like (1.22). Before setting foot in this new territory, however, let us
look at a couple of other boundary value problems.

Consider the problem of heat flow in a rod, as before, but now assume that
the ends of the rod are insulated. Thus, instead of (1.17) we consider

Uy = kuxx, ux(o, t) = ux(l, t) ={. (123)

The technique we used to solve (1.17) also works here, with only the follow-
ing differences. The conditions (1.19) are replaced by

Y = X' (D=0 (1.24)
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which force C; =0 (rather than C| = 0) and A/ = n7 in (1.20). Again, we may
assume that n > O since cos(nmx/l) = cos(—nzx/l), but now we must include
n = 0. We thus obtain the sequence of solutions

—n*n?kt
nr )cosmzx (n=0,1,2,...),

Un(x,t) = exp'( T2 j
which can be combined to form the series
o0 o0 el
U= aniin = > anexp ( nlg kt) cos mlzx_
0 0

This series will solve the problem (1.23) subject to the initial condition u(x, 0) =
f(x) provided that

f(x)=§anoos§—7lyf. (1.25)

T.hu.s we have arrived at another series expansion problem, different from but
similar to (1.22).

For yet 9nother variation on the same theme, consider heat flow in a rod
that is bent into the shape of a circle, with the ends joined together. We may
specify the position of a point on the circle by its angular coordinate §, measured
from some fixed base point. Since linear distance on a circle is proportional to
angular distance (Ax = rAf where r is the radius), the heat equation u; = kyxx
can be rewritten as

ur = kugyg

yvhere k = ko/r?. We try to find solutions of the form u(8,t) = 8(8)T(2), and
just as before we find that
T(t) = Cee®™,  8(8) = C;cosfv/—4 + Cy sin 6+/—A (1.26)

for some constant 4. Here there are no boundary conditions like (1.19) or (1.24)
because the rod has no ends. Instead, since the angular coordinate 6 is well-
deﬁned only up to multiples of 27, we have the requirement that 6(9) must be
periodic with period 2z. This condition does not kill off either of the coefficients

C; or C? in (1.26), but it does forge v/ —A4 1o be an integer n. The upshot is that
we obtain series solutions of the form

[29]
u(8,1) = (ancosnb + by sin ng)e~"kt
0
and such a series will satisfy the initial condition u(6,0) = f(8) provided that

f(8) =S"(ancosnb + by sinnd). (127
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Finally, we present an illustration of these techniques involving something
other than the heat equation. Consider the problem of a vibrating string of length
1, fixed at both endpoints. The mathematical problem 1o be solved is

Uzt = Crixx, w(0,8) =u(l,t)=0. (1.28)

If we take u(x,t) = X(x)T(t), (1.28) becomes
X(x)T"(t) = X" (x)T(1), (1.29)
X0)=X)=0 (1.30)

On dividing (1.29) through by 2 X (x)T (1), we get
X"(x)/X(x) = T"(0)/*T(0),

and both sides of this equation must be equal to a constant that we call —A2. (As
before, 1 might be any complex number until we pin it down further.) Hence,

X"(x) = -A2X(x), T'(t)=-AAT(Q).
The general solutions of these ordinary differential equations are
X(x) = C)cosAx + C; sinix, T(t) = Cycosict + Cysindct.

As with the heat equation, the boundary conditions (1.30) imply that C; = 0 and
A = nn/l where n is a (positive) integer. We therefore obtain the series solutions

oo
. ATX nrnct . nuct
u(x,t)—;sm--l—(ancos——T—-—t—bnsm—?———\). (1.31)
We recall from §1.1 that the appropriate initial conditions for this problem are
to specify u(x,0) = f(x) and (9u/81)(x,0) = g(x). Setting ¢ = 0 in (1.31), we
find that

o0
f(x) = }; an sin l‘_’;?ﬁ

whereas if we differentiate (1.31) with respect to ¢ (ignoring possible difficulties
about differentiating an infinite series term by term) and then set ¢ = 0, we get

o0

gx) =3 1?—C—‘bn sin ﬁflﬁ
1
Thus we are led once again to the problem of expanding f and g in a sine series
of the form (1.22).

To sum up: in order to carry out the program of solving differential equations
by separation of variables, there are two problems that have to be addressed.
First, there are some technicalities connected with the convergence properties of
infinite series; these are sometimes annoying but rarely are really serious. Second
and more important, the following questions must be answered. Can a given
function on the interval (0,1) be"expanded in a sine series (1.22) or a cosine series
(1.25)? Can a periodic function with period 2n be expanded in a series of the form
(1.27)? If so, how?

- . e . t B YL Ao 4
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EXERCISES

1. Derive pairs of ordinary differential equations from the following partial dif-
ferential equations by separation of variables, or show that it is not possible.
a4 Yiuxx +ty=0.
b. X2uUxx + Xty + tyy +u =0,
C. Uxx + Uxy +Uyy = 0.
d. Uxx + Uxy + Uy = 0.
2. Derive sets of three ordinary differential equations from the following partial
differential equations by separation of variables.
a. Yuxx + XUyy + XYUzz = 0.
b. .xzuxx + XUx + Uyy + xzuzz =0,
3. Use the results in the text to solve

Uy = iy, u(0,8) =u(l, 1) =0,
#{x,0) = 2sinzx — Isindnx, u(x,0)=0 (O<x<l).

4. Use the results in the text to solve

Uy = TIqux, ux(O, t) = ux(ﬂ, Z) = O,
u(x,0) =3 —-4cos2x O<x<m).

Determine a value of ¢ so that |u(x,?) — 3| < 1074 for ¢ > ;.

5. Bg separation of variables, derive the solutions u,(x,y) = sin nnx sinhnzy
o

uxx+uyy=0, u(an)=u(lay)=u(xs0)=0
that were discussed in Exercise 5a, §1.2.
6. By separation of variables, derive the family of solutions
ui,,(x, ¥, Z) = Sin MTX COS NLY €XPp (:‘: m? + n2 nz)
of the problem

2
Viu=0, w(0,y,2) =u(l,y,2) = up(x,0,2) = up(x,1,z) = 0.

7. L;‘se separation of variables to find an infinite family of independent solutions
o

U = Klxx, u(0,8) =0, ux(l,t) =0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated.




CHAPTER 2
FOURIER SERIES

In Chapter 1 we derived three problems concerning the expansion of functions
in terms of sines and cosines. The most fundamental of these is the expansion of
periodic functions, which is of importance not only for boundary value problems
but for the analysis of any sort of periodic phenomena, and which has provided
either direct or indirect inspiration for many of the developments of modern
mathematical analysis. Most of this chapter is devoted to the study of periodic
functions. Once they are understood, the other two expansion problems of §1.3
can be solved without difficulty, as we shall see in §2.4.

In many respects it is simpler and neater to work with the complex expo-
nential function e'? instead of the trigonometric functions cos§ and sinf. We
recall that these functions are related by the formulas

i 4 g—if
2 E
e'% = cos 6 + isin 8.

if =it

sinf = 5

cosf =

The advantages of cosine and sine are that they are real-valued and are, respec-
tively, even and odd; the advantages of the exponential are that its differentiation
formula (¢’?)' = ie’® and addition formula ¢/+%) = ¢'¢* are simpler than the
corresponding formulas for cosine and sine. Accordingly, it is worthwhile to be
able to translate one formulation into the other without much effort; we urge the
readers who have not yet acquired this facility to spend a little time doing so. A
more complete list of the properties of exponential and trigonometric functions
of complex variables will be found in Appendix 2.

2.1 The Fourier series of a periodic function

Suppose that f(9) is a function defined on the real line such that f(6+2x) = f(6)
for all 8. Such functions are said to be periedic with peried 27, or 2z-periodic for
short. We shall assume that fis Riemann integrable on every bounded interval;
this will be the case if f is bounded and is continuous except perhaps at finitely
many points in each bounded interval. (We shall consider various other hypothe-
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function, we shall allow f to be complex-valued rather than merely real-valued.
This bit of extra generality causes no additional difficulties and indeed simplifies
some things; moreover, in more advanced work it is often crucial to use complex
functions.

We wish to know if f can be expanded in a series

f(8) = Say+ ) (ancosnd + by sinnd). 2.1
1

Here iaj is the coefficient of the constant function 1 = cos08, and the factor of
% is incorporated in it for reasons of later convenience (see the remark following
equation (2.6)). There is no by because sin 08 = 0.

~In view of the formulas cosnf = (¢"% + ¢~"9)/2 and sinnd = (ef -
e~"9)/2i, (2.1) can be rewritten as

[o o]
f(0)=3" cne™® (2.2)
—C0
where
Co=%ap;  Cn=4(an—iby) and c_p = §(an + iby) for n =1,2,3,... (2.3)
Aljcernatively, if we start out with (2.2), by using the formulas ¢ = cosnf +
isinnd, cos(—n)@ = cosnb, and sin(~n)f = —sinnd, we can put it in the form
(2.1) where
ag = 2¢p; n=Cn+C-p and bp=i(ch—c-y) forn=1,2,3,... (2.4)

In what follows we shall work primarily with (2.2), but we shall also show how
to interpret the results in terms of (2.1).

As a first step towards analyzing general periodic functions in terms of
trigonometric series, let us consider the following question. If we know to begin
with that f(6) has a series expansion of the form (2.2), how can the coefficients
¢n be calculated in terms of f? The answer to this question is appealingly simple.
Let us multiply both sides of (2.2) by e~*? (k being an integer) and integrate
from —x to n. Taking on faith for the moment that it is permissible to integrate
the series term by term, we obtain

" %6 = T
/_ () = Z:OC" /“ el R0gy,
But
T . n —k -k
itn=k) 39 1 im=kyp|” _ =D~ (=1)"F .
Lne de mi(n-k)e = Oy =0 ifn#k,

i1 . n
[ e%%d0= [ do=2n ifn=rt.
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Hence the only term in the series that survives the integration is the term with
n =k, and we obtain .
[ F(8)e~ 0 46 = 2mcy.

-7
In other words, relabeling the integer k as 7, we have the desired formula for the
coefficients cn: |

_ L[ —inf 2.5
tn = 5= —nf((?)e dé. (2.5)

It is now an easy matter to find the coefficients a» and by for the series (2.1):
1 4
ag=20== [ [f(6)db,
T J-n

andforn=1,2,3,..,

i3 . . z
an = Cpn+ Con = 5%/_7!1"{8)(@””" +e"f)dg = —};/_n f(6)cosnb do,

n . ) T .
bo = ilen—con) = 5= [ £(0)e™ a0 = 2 [ [(0)sinnd d6;

—T

that is, .
an = 1 f(8)cosnbdo (n>0);
*J-x (2.6)
by = % 7(6)sinnfd6  (n>1).
-7

(Note that the formula for a» here holds also for n = 0; this is the reason for the
factor of § in (2.1).)

To recapitulate: if f has a series expansion of the form (2.1) (or (2.2)), and
if the series converges decently so that term-by-term integration is permissible,
then the coefficients a, and by [or cn] are given by (2.6) [or (2.5)]. But now if
f is any Riemann-integrable periodic function, the integrals in (2.5) and (2.6)
make perfectly good sense, and we can use them to define the coefficients an, bn,
and ¢,. We are now in a position to make a formal definition.

Definition. Suppose f is periodic with period 2z and integrable over [-7, zl.
The numbers ¢, defined by (2.5), or the numbers a» and b d§ﬁned by (2.6), are
called the Fourier coefficients of f, and the corresponding series

oG o
> cne™® or lag+ (ancosnd + bnsinnd)
—00 1

is called the Fourier series of f.

Instead of integrating from —z to # in (2.5) and (2.6), one could equally well
integrate over any interval of length 2z, for instance from 0 to 2=, ‘The result
will be the same since the integrands are all 2z-periodic. This is an instance of

e PVl mmmmmnd £ant wwhink in cufRaiantly neafil tn merit a enecial mentian
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Lemma 2.1. If F is periodic with period P, then f:’LP F(x)dx is independent of
a.

Proof: Let

g(a) :'/GHP‘F(x)dx = /OMF(x)dx - /OaF(x)dx.

By the fundamental theorem of calculus, g’(a) = F(a + P) — F(a), so by the
periodicity of F, g’ vanishes identically. Thus g is constant. i

Another useful observation in this context is that

a
’ F(x)dx = {2/0 F(x)dx 1if F iseven,
- 0 if F is odd.

{(Recall that F is even if F(—x) = F(x) and odd if F(~x) = —~F(x).) Since cosn8
is even and sin 16 is odd, we have the following result.

Lemma 2.2. With reference to the formulas (2.6),

n
if f is even, an = —7%—/ f(@)cosnBd6 and b, =0
0

iffisodd an=0 and by= %/"f(e)smna 4o,
0

Whether the Fourier series of a 2z-periodic function f is written in the
trigonometric form (2.1) or the exponential form (2.2), the constant term in the
series is
1 n

=0z | fi6)do,

G = %ao
which is nothing but the average or mean value of f on the interval [z, 7]. By
Lemma 2.1, it is also the mean value of f on any interval of length 2z. This fact
is very useful, and it may be more easily remembered than the integral formula;
accordingly, we display it as a lemma.

Lemma 2.3. The constant term in the Fourier series of a 2n-periodic function f is
the mean value of f on an interval of length 2n.

The preceding discussion shows that if we wish to find a trigonometric series
that converges to a given periodic function f, the Fourier series of f is the only
reasonable candidate; but we do not yet know whether it always does the job.
Before tackling this general question. let us comnute a counle of examnles.
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(b)

(c)

(d)

(e)

FicurE 2.1, The triangle wave of Example 1 and some partial sums of its

Founer series: (a) the triangle wave, (b) Sy, (¢) Sy, (d) 3, and (e) Sy, where
1w 41T KL 1\=2 nnafnl  1\0

2.1 The Fourier series of a periodic function 23

Example 1. Let f be the 2z-periodic function determined by the formula
f(0)=10] for ~n<b<m

that is, f is the triangle wave depicted in Figure 2.1(a). Since f is even, we can
calculate the coefficients a, and b, by using Lemma 2.2. We have b, = 0 and

L2 " 2 ("
an ='—/ f(6)cosnBdl = ——/ Bcosnbda.
T Jo T Jo

Thus, for #n =0, .
¥4
=3/ 9d0=192‘ =,
and for n > 0,
20sinnf|" 2 ["sinnd 2cosn@|* 2 (-1)" -1
an=- — dH:— 5 = — 5 y
T n | mly =n T nt g ®m n

since sinnz = 0 and cosnzm = (~1)". Now, (~1)" — 1 equals —2 when n is odd
and 0 when # is even. Therefore, the Fourier series of f is

4 1 7 cos(2k — 1)8
M—ﬁ,pé:s ;Zcosnlﬁ-j« Z R (2.7)

o 2

The graphs of the first few partial sums of this series are shown in Figure 2.1(b~e).
Evidently they provide good approximations to - after only five terms (including
the constant term), the graph of the partial sum is almost indistinguishable from
the graph of f, except that the corners are a bit rounded. Moreover, we can easily
see that the whole series converges absolutely, by comparison to the convergent
series 3.{°n

Example 2. Let g be the 2zn-periodic function determined by the formula
g0)=6 for —m<B <.

In other words, g is the sawtooth wave depicted in Figure 2.2(a). We could use
Lemma 2.2 to calculate a, and b, since g is odd, but for the sake of variety we
shall use (2.5) to calculate ¢, instead. For n = 0 we have

1 ¥4
co=§;/_n0d9=0,

and for n # 0 we integrate by parts to obtain

s b4 .
B 1 % —ing B 1 ee——xnﬂ 1 7 e—zn()
Rl e e =

(_1)n+1

in

X “\ —im n2

3

1 _ing 0 l)n
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<]
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Ficure 2.2. The sawtoo‘th wave of Example 2 and some partial sums of
its Fourier series: (a) the sawtooth wave, (b) S3, (c) Ss, and (d) S14, Where
Qur = SV (1 =T gin nh.
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since e~/ = (~1)", Hence the Fourier series of g is

("‘ I)HH ein()
o in

Here n runs through all positive and negative integers. Since (-1)" = (=1)"*,
the nth and (—n)th terms of this series can be combined to give

‘ ind —in@ _qya+l
(~1)m1 (-"-.--+ e ) = 25D inne,
1243 n

—in
and thus the Fourier series of g is

23 D™ g 2.8
21: ——,—sinnd. (2.8)

The graphs of some partial sums of this series are shown in Figure 2.2(b-d).
One can see that these partial sums do approximate the original function g, but
a comparison of Figures 2.1 and 2.2 shows that the quality of the approximation
here is markedly inferior to that in Example 1. One must add many more terms
to the series to get a comparably close fit to the original curve, particularly near
the discontinuities. (See also Figure 2.8 in §2.6, showing the 40th partial sum
of the Fourier series of the reversed sawtooth wave, for an even more dramatic
demonstration of this fact.)

Analytically, the reason for this is that the terms in the series (2.7) tend to
zero much more rapidly than the terms in the series (2.8). Precisely, if one disre-
gards the even-order terms in (2.7) (which are all zero), the nth term in (2.7) is of
the order of magnitude of (27— 1)72, whereas the nth term in (2.8) is of the order
of magnitude of n~!. Thus, the contributions of the high-order terms is much
less in (2.7) than in (2.8). As we shall see in §2.3, this phenomenon is intimately
related to the fact that the triangle wave is smoother than the sawtooth wave:
the former is everywhere continuous, whereas the latter has jump discontinuities.
The point is that the rougher a function is, the more difficult it is to approximate
it with perfectly smooth functions like linear combinations of cos 78 and sin n6.

In fact, there seems to be some danger that the series (2.8) will not converge:
the nth term has magnitude roughly n~! in general, and > n~! diverges. On
the other hand, at a given point # some of the functions sin 78 will be positive
and others will be negative, so there may be some cancellation effects that will
prevent divergence. This is in fact the case, as we shall prove in the next section.
For the moment, we simply wish to impress on the reader that the convergence
of Fourier series is not a simple matter.

Table 1 gives a list of some elementary Fourier series. It includes all the ex-
amples we shall need later on. The fact that all the functions in this table really
are the sums of their Fourier series (except perhaps at their points of discontinu-
ity) follows from Theorem 2.1 in §2.2.

We conclude this section by deriving an estimate on the Fourier coefficients
that will he needed tno estahlish conversence reenlte in the fallnuwine eactinne
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TABLE 1. FOURIER SERIES

2.1 The Fourier series of a periodic function 27

The functions f in this table are all understood to be 2z-periodic. The formula
for f(8) on either (—z,x) or (0, 27) (except perhaps at its points of discontinuity)
is given in the left column; the Fourier series of f is given in the right column;
and the graph of f is sketched on the facing page.

1 f)=6 (-n<b<m) Ziwsinne
" n (1 (2)
_ _ n_ 4gacos(2n—1)6
i A I DR AN AN / -/
o , : = ;
3.0 f@)=n-0 (0<6<2m) 22““:9 \ \ NG 7
1
4. | £(6) = 0 (-n<8<0) 2 <=cos(2n—1)0 ) (4)
: ()'{e (0<6<m) Z‘“iz; an-1y
+§:(—:—1—)§jﬁsinn6
1 ' ' ' '
x T w
5.| f(8) =sin® 6 1~ §cos26
®) (6)
-1 (-m<6<0) 4 X sin(2n - 1)60
6. f(e)"{x 0<6<m) E;MM—-I
[0 (-m<8<0) 1 2&sin(2n-1)8 L [ JAVAVAVAVAVAN
7 f(g)”{1 0<6<n) A D Ty T ps
8.| £(6) = sin6) 2 4y cosint ™ ®)
1
_ . 2 4 (=1)"cos2nb
| Rk AVAVAVIVAVAVAEIVAN ol
. ,;r ¥
{0 (-m<6<0) 1 2&cos2nd | 1 i
10. f(a)“{sina 0<6<n) 5‘52134;«2—1*7"’“‘9

[£23) FAWNY
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TABLE 1 (continued)
4 0 (~a<f<a) 2 sinna
11. ] f(6)={ ak=% (a<b<m) 3. —5—sinnd ey e —
afl (-m<0<-a) rToaqon \//\ {//\ I
a a 7w
(2a)~! (18| <a) 1.1 <. sinna
12. | f(8) = { (@ <18 < 7) 5 ”21: cosnd
(11) (12)
(2a)~! (|6—6 < a) 1 1sinna
13. ] f(8) = { (@ < |B8—B| < ) 27z+nz ——(cosnfo cosnd
+sin 1y sin n6) C C — - 4+ —_
1 (-a<f<a) o 9Io7r — (Z...;?r I
14. | f(8) = {—1 (2a < 6 < 4a) > smnna [(1 — cos 3na) cosnd -
0 elsewhere in (—7n,7) 1
—sin3na sinnﬁ] (13) (14)
“2(g-16)) (|8l<a) 1  2<=1-cosna
15.) f(8) = { (a< 0] <) Q—E+E¥—Wcosn6 /\ A
16.| f(6)=0% (-n<B<m) % Z ® cosn a T .
1 [ x
(15) (16)
e N 8 < sin(2n - 1)6
17.| f(O)=8(rn~168]) (-m<8<m) n;“‘“—_"‘(zn—ns
(1) AN 5 5
18. f=e? (-n<b<n smhbn (- 1) /\ / /.
f(6) ( ) Z N4 N4 LA |
T
b 1 & einG
19.| f(8)=¢e®® (0<6<2nm) o ;ob—in (17) (18)
3 o0 ¢ qyn+l ' +
20. | f() =sinh® (-n<B<m) 2812“ ; ( n12)+ 1” sin né : / E /
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Bessel’s Inequality. If f is 27m-periodic and Riemann integrable on [-n, 7], and
the Fourier coefficients c, are defined by (2.5), then

S jenf? < 71;5 [ﬂ F(0)12d0.

Proof: Since |z|2 = z7 for any complex number z,

2

N .
£(0) =2 ene™
N

= (ro)- ijcneme) (7 - szmnﬂ)

—N
u i j X = i(m—n
= £ -3 [eaf )™ + T £ + ZNcmcne( )8,
-N m,n==—

Now divide both sides by 27 and integrate from -7 to n. Taking account of the
formulas

§ ‘ T im— 0 ifm#n,
- (m=m)b 7g _
= " qoe o =cr g [ S0 de_{l P
we obtain - N p
5= | ([0 =3 cne™) db
) e
1 7 N N B
= o [ A ©)Pd8 =3 [enn +Taca] + 3 en
2n foq ~ et

N
1 [" 2 2
= 0)12d6 = 3" lenl.
zn/__nif( )i gy

But the integral on the left is certainly nonnegative, so

- N
0< = / F(0)2d6 =3 |enl

21 ~

Letting N — oo, we obtain the desired result. ]

Bessel’s inequality can also be stated in terms of the coefficients a, and bn
defined by (2.6). Indeed, by equation (2.4), for n > 1 we have

{aniz + |bni2 = Anln +‘bn_5n
= (Cn + C=n)(Cn +T=n) + i(cn — C=n)(~=1)(Cn — T—n)
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50 that
a0l =4icol’,  |anl® + bl = 2(Jeal® + c-nl?) forn 1.

Therefore,
HlaoP +§¥(zanlz + 1bal”) = > lenf” < 5 | LF(6)de.

It turns out, as we shall see later, that Bessel’s inequality is actually an equal-
ity. For now, its main significance is simply the fact that the series S anl?,
S 1bn)?, and 3" |cx)? are all convergent. As a consequence, we obtain the follow-
ing result, which is a special case of a theorem known as the Riemann-Lebesgue
lemma.

Corollary 2.1. The Fourier coefficients an, bn, and ¢y all tend 1o zero as n — oo -
(and as n — —oc in the case of cn).

Proof: |an|?, |ba}?, and [cu|? are the nth terms of convergent series, so they
tend to zero as # — oo; hence so do ay, ba, and cy. ]

EXERCISES

Verify the formulas of Table 1. That is, for 3 < n < 20, Exercise # is to show
that the series in the right column of entry n in Table 1 is the Fourier series of
the function in the left column. (Entries 1 and 2 are Examples 2 and 1 in the
text.) Some of these functions are related to each other, and you may be able
to use this fact to avoid calculating all the Fourier coefficients from scratch each
time. Entries 3 and 4 can be derived from entries 1 and 2; entry 7 can be derived
from entry 6; entries 9 and 10 can be derived from entry 8; entries 13 and 14
can be derived from entry 12; and entries 19 and 20 can be derived from entry
18.

2.2 A convergence theorem

Question: does the Fourier series of a periodic function f converge to f? The
answer is certainly not obvious — for example, why should one be able to expand
nonsmooth functions like the examples in §2.1 in a series whose individual terms
cosnx and sin#zx possess derivatives of all orders? Fourier’s assertion that the
answer is yes was initially greeted with a certain amount of disbelief. In fact, the
answer is always yes provided that things are interpreted suitably, although the
situation is somewhat more delicate than one might initially expect.

In this section we shall show that the Fourier series of f converges to f under
certain reasonablv seneral hunnthecee nn £ latar in 872 29 4 224 and 202
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Suppose —oo < 4 < b < co. We say that a function f on the closed interval
[a, b] is piecewise continuous provided that
(i) f is continuous on [a, b] except perhaps at finitely many points xj,..., Xk}
(i) at each of the points xi,..., X, the left-hand and right-hand limits of f,

Sx=) = hjcl),n}»of(xj —h) and flx+)= h_}(l)fl}z>of(xj + h),

exist. (If the endpoint a (or b) is one of the exceptional points x;, we require

only the right-hand (or left-hand) limit to exist.)

That is, / is piecewise continuous on [a,b] if f is continuous there except for
finitely many finite jump discontinuities. (When we say that the limits f(x;%)
exist, we mean in particular that they are finite: co is not allowed as a value.) We
denote the class of piecewise continuous functions on [a, bl by PC(a,b).

Next, we say that a function f on [a, b] is piecewise smooth if / and its first
derivative ' are both piecewise continuous on [a, b], and we denote the class of
piecewise smooth functions on [a, b] by PS(a,b). More precisely, f € PS{a,b)
if and only if

(i) fe PC(a,b);
(ii) f’ exists and is continuous on (4, b) except perhaps at finitely many points

X1,...,Xg (which will include any points where f is discontinuous), and the
one-sided limits f'(x;~) and f'(x;+) (j = 1,...,K), and also f'(a+) and
f(b=), exist.

In other words, f is piecewise smooth if its graph is a smooth curve except
for finitely many jumps (where f is discontinuous) and corners (where f7 is
discontinuous). We do not allow infinite discontinuities (such as f(x)=1/x has
at x = 0) or sharp cusps (where /’ becomes infinite). See Figure 2.3.

AN~ \‘/JL/’

T ]

FIGURE 2.3. A piecewise smooth function (left) and a function that is not
piecewise smooth (right).

One last bit of terminology: a function defined on the whole real line R
is said to be piecewise continuous or piecewise smooth on R if it is 80 on every
bounded interval [a, b]. (That is, f or f’ may have infinitely many discontinuities
on the whole line but only finitely many in any bounded interval.) We denote the

spaces of piecewise continuous and piecewise smooth functions on R by PC(R)
neA DO
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' We now return to consideration of the Fourier series of a 2z-periodic func-
tion f(#). We recall that this is defined to be

o0

oo
a0+ (ancosnf + basinng) = Y cre'™® 2.9)

1

where
1 /" 1 ("
a,,::;z—/ fy)cosny dy, bn=;z—/ Sf(y)sinny dy,
-x

- - ' (2.10)
Cp = E/_ﬂf(w)e"‘”“’dw.

(We_ have labeled the variable of integration in (2.10) as y simply for later con-
venience.)

. What ;neaning is to be attached to this series? Of course, the sum of any
infinite series is defined to be the limit of its partial sums. When we write the
_series §2.9) in trigonometric form, we agree always to group together the terms
?nw"olvmg cosn6 and sinn6 as indicated above; correspondingly, when we write
it in exponential form, we agree always to group together the terms involving
e™ and e~™9, (This convention will always be in Jorce) Thus we take the Nth
partial sum of the series {2.9) to be the sum S{,(B) defined by

N N
§4(8) = Lag+ S (an cos né + by sinnf) = S cne™, (2.11)
I Y

and our aim is to show that S]{, converges to f as N — oo,
If we plug the definition (2.10) of ¢, into (2.11), we see that

1 & : N n .
SO =73 [ fwer®ay =23 [ 1 Oay.
— -N —TT

’ljhe last equality results from replacing # by —n; this does not affect the sum
since n ranges from —N to N. If we now make the change of variable ¢ = y ~ 6
and use Lemma 2.1, we obtain

In short,

S7(6) = _’: f(0+¢)Dy(¢)d¢, where Dy(¢) = .2.1&. i e, (2.12)
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The function Dy(¢) is called the Nth Dirichlet kernel. We can express Dy
in a more computable form by recognizing that it is the sum of a finite geometric

progression:
1 —iN 7) NG 1 _iNg 2N ng
DN(¢)=~2—7-['€ iNo(1 +e'® 4.+ € )z_z_ﬁe i Ze; .
0

Since }:{)( = (rK+t ~ 1)/(r — 1) for any r # 1, for ¢ # 0 we have

Dy(§) = 5-¢ T = 2 . 2.13)
Moreover, on multiplying top and bottom by e~'#/2, we obtain
{ exp[i(V + D] —exp[-iV+ D] 1 sin WA ho 1y

Ov@) =3z exp(i14) - exp(~i}¢) - singd

From this formula it is easy to sketch the graph of Dy: it is the rapidly oscillating
sine wave ¥ = sin(N + %)q& amplitude-modulated to fit inside the envelope y =

+(27)" ! csc 3¢. See Figure 2.4.

&
#
PP PN T ¥, ﬁ"\'KA 1\ ‘I\‘R RN,
v vy v”*‘[\ duyy,.u.v 2 2
&

§

'
Ty

FiGURE 2.4. Graphs of the Dirichlet kernel Dys(¢) (solid) and its envelope
+(27)" ! csc §¢ (dashed) on the interval —x < ¢ < 7.

The pictorial intuition behind the fact that S{,(B) — f(0) is as follows: in
the integral formula (2.12) for S]{}(H), the sharp central spike of Dy(¢) at ¢ =0
picks out the value f(6), and the rapid oscillations of Dy(¢) away from ¢ = 0
kil off most of the rest of the integral because of cancellations between positive
and negative values. Before proceeding to the actual proof, however, we need

Pl e ela Y
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Lemma 2.4. For any N,

0 z

Dy(6)d6 = / Dy(6)do = L.
% 0 2
Proof: From formula (2.12) we have

1, 1
Dy(6) = 5 + EZCOS"H’
1

so that

3

o

# 9 1< sinnd i
D = | = =
/o w(6)a8 [27: t 21: n ]0 -
and likewise ‘for the integral from -z to 0. |

Here at last is our main convergence theorem. It says that the Fourier series
of a fungtmn f € PS(R) converges pointwise to f, provided that we (re)define f
at its points of discontinuity to be the average of its left- and right-hand limits.

Theorem 2.1. If [ is 2n-periodic and piecewise smooth on R, and ST, is d
(2.10) and (2.11), then ’ w is defined by

dim S4(0) = §[£(6-) + £(64)]

for every 6. In particular, impy_, o SI{,(G) = f(8) for every 8 at which f is contin-
UOus.

Prooff By Lemma 2.4, we have

. 0 x
1/0-)=70-) [ Dn(@&)ds,  $1(6+)=16+) [  Du(#)ds,
and hence by equation (2.12),
S§(0) - 4 [7(6-) + f(6+)]

0 A
= [ [16+4)- 16-)]|Dr(d)d + /0 [0+ ¢) - 7(6+)| Dn(¢) do.

-

We wish to show that for each fixed 6, this quantity approaches zeroc as N — co.
But by formula (2.13), we can write it as :

L7 g(e) W18 _ =iy gy (2.15)
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where g(¢) is defined to be

JO+8)=0-) ¢ nepco  LOEOLOD oo g
ei¢_1 el¢"‘1

g is a well-behaved function on [-7, 7], as smooth as f is, except near ¢ = 0
(where ¢ — 1 vanishes). However, by 'Hépital’s rule,

SO+ = f104) _ . SO+) _ S(04)
Jim 510) = g HOZGFER - i 2 =

Similarly, g(¢) approaches the finite limit i~1f'(8-) as ¢ approaches zero from
the left. Hence g is actually piecewise continuous on [-7, 7], so by the corollary
to Bessel’s inequality in §2.1, its Fourier coefficients

L " g(g)e dg

Cn—_—'j“i o

tend to zero as 1 — =oo. But the expression (2.15) is nothing but C_y.1) — Cn,
so it vanishes as N — oo; and this is what we needed to show. ]

Let us see what this theorem says with regard to the two examples of the pre-
vious section. The function f of Example 1 is piecewise smooth gnd everywhere
continuous, so the Fourier series of f converges to f at every point. Thus,

n_Asncos2n—-1D8 o e p<p<n. (2.16)
I R a0 fromsos

On the other hand, the function g of Example 2 is piecewise smooth and contin-
uous except at the points § = k7 with k odd. At these discontinuities we ha_ve
glkn-) =n and glkn+) = -7, s0 Llg(kn—) + g(kn+)] = 0. Thus 'the Fourier
series of g converges to g at all points except 6 = kn (k odd), where it converges
to zero. Hence,

for ~n<f<m. (2.17)

S n+1
Z (=1 sinnf =
1 n

ol @

In particular, if we take 6 = 0 in (2.16), we obtain the formula

S SRR SRS SR S
Z:Qk-n2— tgtastag g

(As the reader may check, the same formula results from ta_king ta;cing §=m)
Moreover, if we take § = %n in (2.17) and use the fact that sin %mt is alternately
1 and —1 when # is odd and O when 7 is even, we find that

o0 (__1)k+1 B 1

T
_.1-—%-}-—(——— +...:2—.

3

I
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These are two interesting instances where numerical series can be evaluated as
special values of Fourier series. Others can be found in the exercises.

Theorem 2.1 says that the Fourier series of a 2z-periodic piecewise smooth
function f converges to f everywhere, provided that f is (re)defined at each of
its points of discontinuity to be the average of its left- and right-hand limits there.
Henceforth, when we speak of piecewise smooth functions, we shall assume that
this adjustment has been made, unless we explicitly state otherwise. This will
obviate the need to single out the points of discontinuity for special attention. In
particular, with this understanding, we have the following uniqueness theorem.

Corollary 2.2. If f and g are 2n-periodic and piecewise smooth, and f and g have
the same Fourier coefficients, then [ = g.

Proof:  f and g are both the sum of the same Fourier series. L

EXERCISES

1. Which of the following functions are continuous, piecewise continuous, or
piecewise smooth on [-n, n]?

a. f(@)=csch. b, f(6)=(sin®)/3. ¢ f(8) = (sin§)*3.
d. f(8)=cosfif >0, f(6) = —cosB if 6 <O.
e. f(B)=sinfif § >0, f(6)=sin20if 6 <0.
f. f(0) = (sin®)'/3 if 6 < %n, f(8)=cos8if § > %n.
2. To what values do the series in entries 6, 7, 12, and 18 of Table 1, §2.1,
converge at the points where their sums are discontinuous?

The Fourier series for a number of piecewise smooth functions are listed in Table
1 of §2.1, and Theorem 2.1 tells what the sums of these series are. By using this
information and choosing suitable values of 6 (usually 0, %n, or ), derive the
following formulas for the sums of numerical series. (The relevant entries from
Table 1 are indicated in parentheses.)
11 — (=)™ g2
n2-1_2 ~4n2-1 4

1 = — (-1 n
- = ; =15 (16).

(8).

o

= I eschbr - — (18 or 19).

7. Z —"—:%—;;2— = 57 COthd7 — 55 (18 or 19; be carefull).
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2.3 Derivatives, integrals, and uniform convergence

This section is devoted to an examination of the behavior of Fourier series in

relation to the processes of calculus.
We shall be largely concerned here with periodic functions that are both

continuous and piecewise smooth. Pictorially, the graph of such a function is a
smooth curve except that it can have “corners” where the derivative jumps. The

fundamental theorem of calculus,

b
F(b) - fla) = / £1(6)do,

applies to functions f that are continuous and piecewise smooth, even though
f" is undefined at the “corners.” To see this it suffices to express the integral
on the right as the sum of integrals over the subintervals of [, b] on which f is
differentiable; the continuity of f guarantees that the endpoint evaluations at the
intermediate subdivision points cancel out. For example, if f is differentiable
except at the point ¢ € (a,b), we have

b . ¢ b
/a 7'(6)d6 = /a 7(6)d6 + /C 7'(6)d6
= [(0) - f@)] + [1®) - (0] = 1B) - fl@).

This observation will be used implicitly in several of the following calculations,

including the proof of Theorem 2.2.
Our first main result relates the Fourier coefficients of a function to those of

its derivative. The fact that this relation is so simple is one of the main reasons
underlying the utility of Fourier series.

Theorem 2.2. Suppose f is 2n-periodic, continuous, and piecewise smooth. Let
an, bn, and cn be the Fourier coefficients of f defined in (2.5) and (2.6), and let
al,, bl,, and cly be the corresponding Fourier coefficients of f'. Then

ay, = nby, b, = —nan,  Cp=inca.

Proof: This is a simple matter of integration by parts. For example,

C;I _ 2_% jj; fl(e)e-—inﬁ d6 = E%f(g)e_—ine!in _ '2-1-7; [j:{ f(6>(_ine——in3)de_

The first term on the right vanishes because f(~n) = f(x) and e
(=1)", and the second term is incy. The argument for al, and b}, is the same; we

leave the details to the reader. ]
Combining this result with the theorem of the previous section, we easily

ttmmimdl man af Tmarmiar cavian

inm . p—inm

2.3 Derivatives, integrals, and uniform convergence 39

Theorem 2.3. Suppose f is 2n-periodic, continuous, and piecewise smooth, and
suppose also that [ is piecewise smooth. If

o0 . o0
S ene™ = Yag + 3 (ancosn + basinn)
-0 . 1
is the Fourier series of f(0), then f'(8) is the sum of the derived series
o0 . o0
> incne™ = 3" (nby cos nf — nay sin nf)
0 1

Jor all 6 at which f'(8) exists. At the exceptional points where f' has jumps, the
series converges to %[f’(0~) + f’(9+)].

f’roof:. Since f’ is piecewise smooth, by Theorem 2.1 it is the sum of its
Fourier series at every point (with appropriate modifications at the jumps). By
Theorem 2.2, the coefficients of ¢/*?, cosn8, and sinn# in this series are inc
nbn, and —na,. The result follows. ) n;

- In 'c01‘1s1dering integration of Fourier series, one must keep in mind that the
indefinite integral of a periodic function may not be periodic. For example, the
constant funct‘ion f(8) = 1 is periodic, but its antiderivative F(8) = 8 is ’not
However, the integral of every term in a Fourier series is periodic except for thé
cons_tant term, from which we see that a periodic function has a periodic integral
precisely when the constant term in its Fourier series vanishes, i.e., when its mean
value on [-x, 7] is zero. We therefore arrive at the following res:ﬂt.

Theorem 2.4. Suppose f is 2m-periodic and piecewise continuous, with Fourier

j;egi;ients an, bn, Cn, and let F(0) = [ f($)dé. If ¢y (= Lag) = 0, then for all 6
ve

Cn i ad
F(8) = Co+ %O: Cngint = 440+ (E‘;g sinné - 22 cos nﬁ) (2.18)
n 1

where the constant term is the mean value of F on |-, n]:

1y L[
Co= 34y = 5 41’(9)(16“ (2.19)
The sgrz’es on the right of (2.18) is the series obtained by formally integrating the
Fourier series of f term by term, whether the latter series actually converges or not.
If cg # 0, the sum of the series on the right of (2.18) is F(8) — cof.

' Prooj.? Fis cont%nuous and piecewise smooth, being the integral of a piece-
wise continuous function. Moreover, if ¢y = 0, F is 2n-periodic, for

8+2n 7
FO+2m)-FO) = [ figydo= [ F($)dd=2mc,=0.
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Hence, by Theorem 2.1, F(6) is the sum of its Fourier series at every 6. But
by Theorem 2.2 applied to F, the Fourier coefficients 4», Bn, and Cy of F are

related to those of f by
4, = b = Co=" (n#0)
n 3 7 7 5 ) ZI’Z \ “
The formula (2.19) for the constant Cy or A is just the usual formula for the

zeroth Fourier coefficient of F. If ¢y # 0, these arguments can be applied to the
function f(8) — ¢o rather than f(§), vielding the final assertion. i

Example. Let f be the periodic function such that f(8)=1for0< 6 <mand
f(6) = —1 for —x < 6 < 0, and let F{B) = f09 f(¢)d¢. Clearly F(0) = |6] for
|0 < n. By entry 4 of Table 1, §2.1, the Fourier series of f is (4/7)S7°(2n -
1)~ !sin(2n — 1)8, so by Theorem 2.4 we have

4

4 S cos(2n— 1) 1 n
F(6>:COWEZW WhereCQ——E[—x‘eEdG—’Z

Thus we recover the result of entry 2 of Table 1.

Theorem 2.1 gave conditions under which the Fourier series of f converges
pointwise to f. However, experience in working with infinite series teaches us
that simple pointwise convergence of a series can be a tricky business, and that
we are much better off if the convergence is absolute and uniform. We recall
the definitions: suppose the series Y5 gn(x) converges to g(x) on a set S. The
convergence is absolute if the series 307" [gn(X)| also converges for x € §, and
uniform if not only does the difference g(x) — Z‘f gn(x) tend to zero for each
x € S, but so does the maximum of this difference over the whole set 5t

N

g(x)"zgn(x)t —0 as N — oco.
1

sup
x€S

The most useful criterion for guaranteeing absolute and uniform convergence is
the Weierstrass M-test: if there is a sequence My of positive constants such that

o0
lgn(X)| < My forxeS, and » My<oo,
I

then the series 3.7 ga(X) is absolutely and uniformly convergent.
In the case of Fourier series, we have the obvious estimates

lancosnb| < |anl,  |businnd] < |bal, lcne™| = |cnl.

Hence the Weierstrass M-test will apply to a Fourier series in trigonometric form

if 3°5° lan| < oo and 3577 |bn| < 0o, and to 2 Fourier series in exponential form if
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3% len] < oo. Since it follows from the equations (2.3) and (2.4) relating an,
by, and ¢y that
lcanl < |an| + {bnl, lan| < [en] + fc=nl, 1bn] < lonl +{c=nl,

the cond?t?ons 2208" lan] < oo and 3.7° |bn] < oo are completely equivalent to
the cp1_1d1110n oo o lenl < oo, We now present a sufficient (but not necessary)
condition for them to hoid.

Theayem ZTS. If [ is 2m-periodic, continuous, and piecewise smooth, then the
Fourier series of f converges to f absolutely and uniformly on R.

Prgoj? By Theorem 2.1 and the remarks just made, it suffices to show that
the series 3% |cn| converges. Let ¢, denote the Fourier coefficients of f. By
Thegrem 2.2 we know that ¢, = (in)" ¢, for n # 0, and by Bessel’s inequality
applied to 17,

S Ichl? < 5135 /7; I/ (6)12d8 < .

Hence, by the Cauchy-Schwarz ineguality,

ix | Z o : 1/2 1/2
enl = {cof + —! < el + ( 5 *‘*) ( fat 12> < oa,
“o w0l ?;5 n? gé% ’

since 3°,0(1/7%) = 23°5°(1/n?) < 0. (In case the reader needs reminding; the
Cauchy-Schwarz inequality says that the dot product of two vectors is tounded
by tk}e product of their norms. It is valid in any number n of dimensions and
also in the limit as n — co. We shall discuss it in more detail in Chapter 3.)

_Let us return to Theorem 2.3. If f has many derivatives, Theorem 2.3 can be
applied several times in succession to calculate the Fourier series of f7, /", /"
etc. Each time one takes a derivative, the magnitude of the Fourier coeﬁic’ienis’
cn (OF ay and by) increases by a factor of |n|, which means that the derived series
converges more slowly than the original series. Or, to put it another way, if the
derived series converges at all, the original series must converge relatively rapidly.
Thus there is a connection between the differentiability properties of a function
and the rate of convergence of its Fourier series. Here is a precise result along
these lines.

Theorem 2.6. Suppose f is 2n-periodic. If f is of class C*k=1 gng =1 s
piecewise smgozﬁ (thus %) exists except at finitely many points in each bounded
interval and is piecewise continuous), then the Fourier coefficients of f satisfy

Sinfan <o, Y lrFba<oo, 3 jnFeaf <o

In particular,

k k
n*ay — 0, n% b, — 0, nkcn—>0 as 1 — oo.

On t{ze”c other hand, suppose the Fourier coefficients ¢n (n # 0) satisfy |ca] <
Cin|~ %+ (equivalently, |an| < gn““‘*") and |bn) < Cn=*+)) for some C > 0
)

cvnd o~ 1 Thsn £ i af alaan 7
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Proof: For the first part, we apply Theorem 2.2 k times to conclude that
the Fourier coefficients c{© of f*) are given by %) = (in)*cp, and similarly for
aﬁ,k) and b,(zk). The conclusions then follow from Bessel’s inequality (applied to
%)) and its corollary. For the second part, we observe that since a > 1,

Sl <CY in|~k=7+9) <2C S " n"% <00 for j<k.
n#0 ns0 n>0

Thus, by the Weierstrass M-test, the series %, (in)/ cne™? are absolutely and
uniformly convergent for j < k. They therefore define continuous functions,

which are the derivatives £ of f(6) = 3" cne'™. ;

The two halves of Theorem 2.6 are not perfect converses of each other; this
is in the nature of things. (There is no simple “if and only if” theorem of this
sort.) However, the moral is clear: the more derivatives a function has, the more
rapidly its Fourier coefficients will tend to zero, and vice versa. In particular, f
has derivatives of all orders precisely when its Fourier coefficients tend to zero
more rapidly than any power of n (for example, ¢x = e““"‘). .

Another aspect of this phenomenon: the basic functions e*® or cosnf
and sinn@ are, of course, perfectly smooth individually, but they become more
“jagged,” that is, more highly oscillatory, as n — oco. In order to synthesize non-
smooth functions from these smooth ingredients, then, the proper technique is
to use relatively large amounts of the high-frequency (i.e., large-n) functions.

These points are worth remembering; they are among the basic lessons of
Fourier analysis. The reader can see how they work by examining the entries
Table 1 in §2.1. For instance, the sawtooth wave in entry 1 is piecewise smooth
but not continuous; its Fourier coefficients are on the order of n~1. The triangle
wave in entry 2 is one step better — continuous and piecewise smooth, with
a piecewise smooth derivative; its Fourier coefficients are on the order of n~2,
These examples are quite typical.

EXERCISES
1. Derive the result of entry 16 of Table 1, §2.1, by using equation (2.17) and

Theorem 2.4.
2. Starting from entry 16 of Table 1 and using Theorem 2.4, show that

0O 4\ g
a. 93-7:26:12}:(—-9—5%—‘9—3‘2 (—m <0 <)
1

o0 ¢ gyn+l 4
b, 94-27:292:482_(._1)7290_3_@,1’1’.‘5_ (—7 < 6 < );
1
i 1 =
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4. By entry 8 of Table 1, we have

2

8in 8 =

and we also have

d b .
cosf = ZZ——ésmG—-~/”/2sm¢d¢.

Show that the series () can be differentiated and integrated termwise to yield
two apparently different expressions for cos§ for 0 < 8 < 7, and reconcile
these two expressions. (Hint: Equation (2.17) is useful.)

5. Let f(8) be the periodic function such that f(8) = ef for -m < 6 < 7, and
let % cne'n? be its Fourier series; thus e = 3> cye™® for |6] < 7. If we
formally differentiate this equation, we obtain e’ = 3" inc,e%. But then
Cn = incy, or (1 — in)cy = 0, so ¢y = 0 for all n. This is obviously wrong;
where is the mistake?

6. The Fourier series in entries 11 and 12 of Table 1 are clearly related: the
second is close to being the derivative of the first. Find the exact relationship
(a) by examining the series and (b) by examining the functions that the series
represent.

7. How smooth are the following functions? That is, how many derivatives can
you guarantee them to have?

a. f(0) :i_ﬁ_ﬁff___ b 0) = o €Os nf
n132 4 2n6 - 1° - J0)= 2n
= 5
o0 n

¢ fB)=y X

0

2.4 Fourier series on intervals

F(?ux‘ier series give expansions of periodic functions on the line in terms of
trigonometric functions. They can also be used to give expansions of functions
defined on a finite interval in terms of trigonometric functions on that interval.
Suppose the interval in question is [-n, z]. (Other intervals can be trans-
formed into this one by a linear change of variable; we shall discuss this point
later.) Given a bounded, integrable function f on [~n, 7], we extend it to the
whole real line by requiring it to be periodic of period 2z. Actually, to be com-
pletely consistent about this we should start out with f defined only on the half-

nnen interval (7 71 nr T—o7 7} or eles (reldefine £ at the endnninte en that
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f(=m) = f(x). To be definite, we follow the first course of action; then the
periodic extension of f to the whole line is given by

f(6+2nm) = f(8) forall 6 € (—=n,n] and all integers 7.

For instance, the periodic functions discussed in Examples 1 and 2 of §2.1 are
the periodic extiensions of the functions f(6) = |6 and g(0) = 8 from (=, 7]
to the whole line.

If f is a piecewise smooth function on (-7, %}, we can expand its periodic
extension in a Fourier series, and then by restricting the variable & to [-7, 7],
we obtain an expansion of the original function. All of what we have said in the
previous sections applies to this situation, but there is one point that needs at-
tention. If the original f is piecewise continuous or piecewise smooth on [~7, 7],
then its periodic extension will be piecewise continuous or piecewise smooth on
R. However, even if f is perfectly smooth on [-7, n], there will generally be dis-
continuities in the extended function or its derivatives at the points (2n+ 1)z, n
an integer, where (so to speak) the copies of f are glued together. To be precise,
suppose [ is continuous on [—7,7]. Then the extension will be continuous at the
points (27 + 1)z if and only if f(-=n) = f(n), and in this case the extension will
have derivatives up to order k at (2n + 1)z if and only if fU(-n+) = fW(n-)
for j < k. (This is illustrated by the examples in §2.1: see Figures 2.1(a) and
2.2(a).) These phenomena must be kept in mind when one studies the relations
between the smoothness properties of f and the size of its Fourier coefficients as
in Theorem 2.6.

Two interesting variations can be made on this theme. Suppose now that
we are interested in functions on the interval [0, ] rather than [-n, n]. We can
make such a function f into a 2z-periodic function, and hence obtain a Fourier
expansions for it, by a twofold extension process: first we extend f in some
simple way to the interval [~=, 7], then we extend the result periodically. There
are two standard ways of performing the first step: we extend f to [-7,7] by
declaring it to be either even or odd. That is, we have the even extension foven of
f to [~n,n] defined by

Jeven(~8) = f(8) for 8 € [0, 7]
and the odd extension f,4q of f to [-7, 7] defined by
Soaa(—0) =—f(8) for 6 € (0,7],  foaa(0) = 0.
(See Figure 2.5.) The advantage of using feven OF foqa Tather than any other

extension is that the Fourier coefficients turn out very simply. Indeed, it follows
from Lemma 2.2 of §2.1 that -

i n Y4
[* foea(®)cosnfdo =2 [ f(8)cosn8df, [ fovenl8)sinnddd =0,
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whereas
4 4 n
Joaal8)cosnBdf =0, fosa(6) sinnBdo =2 / £(6)sinné do.
_ . A

Thus the Fourier series of foven involves only cosines and the Fourier series of
Jodad involves only sines; moreover, the Fourier coefficients for these two cases
can be computed in terms of the values of the original function f on [0, z]. We
are thus led to the following definitions.

Definition. Suppose f is an integrable function on [0, z]. The series
| = 2 ["
Jap+> ancosnd, where ay = = /o f(8)cosnbde,
1
is called the Fourier cosine series of /. The series
e v} 2 n
> basinnf, where by = -7;/ f(6)sinnddo,
: 0

is called the Fourier sine series of f.

\\/\ /\v/ \\//\ Jay \v/\

VoA

Figure 2.5. A function defined on [0, #] (left), its even extension (middle),
and its odd extension (right).

If f is piecewise continuous or piecewise smooth on [0, ], its even periodic
and odd periodic extensions will have the same properties on R, but as before,
one must watch for extra discontinuities at the points nz (n an integer) where
the pieces are joined together. If f is continuous on [0, n], the even periodic
ext.ension will be continuous everywhere, but its derivative will have jumps at the
points 2n7 or (2n + 1)z unless f7(0+) = 0 or f'(n-) = 0, respectively. The odd
periodic extension is less forgiving: it will have discontinuities at the points 2n7n
or (2n+ 1)z unless f(0) = 0 or f(m) = 0, respectively. (As for higher derivatives:
there are potential problems with the odd-order derivatives of the even periodic
extension and with the even-order derivatives of the odd periodic extension at

tha nainte ner )
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Example 1. Consider the function f(6) = 6 on [0, 7]. Its even and odd periodic
extensions are given on (—7,7) by feven(6) = 6] and foaa(8) = g; these are the
functions whose Fourier series we worked out in §2.1. Hence,

o=23 - NCE

oo 1.2 oo
(=1)"1sinnd _m 4 <~ cos(2n - 1o
- 7" % §1 (0 <8 <m).

1
Here f is perfectly smooth on [0, 7], but foda has discontinuities at the odd
multiples of 7. feven is continuous everywhere, but its first derivative has dis-
continuities at all integer multiples of n. The reader may find other examples in
Table 1.

At any rate, if we keep these remarks in mind and apply Theorem 2.1, we
arrive at the following result.

Theorem 2.7. Suppose [ is piecewise smooth on [0,n]. The Fourier cosine series
and the Fourier sine series of f converge to %[f(B—) +f(9+)] at every 0 € (0, ).
In particular, they converge to f(0) at every 6 € (0,7) where f is continuous. The

Fourier cosine series of f converges to f(0+) at 6 =0 and to f(n—) at 6 =n; the
Fourier sine series of f converges to O at both these points.

The results of the previous section on termwise differentiation and uniform
convergence can be applied to these series, provided that one takes account of
the behavior at the endpoints as indicated above.

Finally, we may wish to consider periodic functions whose period is some-
thing other than 27, or functions defined on intervals other than [-7, 7] or [0, z].
These situations can be reduced to the ones we have already studied by making

a simple change of variable.
For instance, suppose f(x) is a periodic function with period 2/. (The factor
of 2 is merely for convenience.) We make the change of variables

= go)=r=s(%).

1 T

Then g is 2n-periodic, so if it is piecewise smooth we can expand it in a Fourier
series:

o . inf . 1 r —in@
g(6) = ;ocne’" T ~ﬂg(e)e b g,

If we now substitute § = nx/l into these formulas, we obtain the 2/-periodic
Fourier series of the original function f:

0 . ! )
FO) =3 ene ™ on = o f fxe™ ! dx. (2.20)
= -
The corresponding formula in terms of cosines and sines is

fx)=1a+> [an cos Z}%{E + by sin ﬂ;—i} , (2.21)
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where
1 ! nIx 1 /! .
an = 7/_1f(x) cos———[—-—dx, by = 7.[.1 f(x) smﬂ;—)fdx. (2.22)

' From this it fgllows that the Fourier cosine and sine expansions of a piece-
wise smooth function f on the interval [0, /] are

bt !
J(x) = 300+ ;an cos ﬁ%— an = —?— /0 fix) cosf—?”[-’f dx, (2.23)

and
o0 . !
flx) = El by sin ET;_J-C-, by = %/o f(x)sin -’—1-7%{ dx. (2.24)

These formplas are probably worth memorizing; they are used very frequently.
An(fthe;r pomt.worth remembering is that, just as in the case of Fourier series for
periodic functions, the constant term %ao in the Fourier cosine series of a function

f on an interval is the mean value of f on that interval: %ag =]"! fé flx)dx.

Example 2 Let us find the Fourier cosine and sine expansions of f(x) = x on
{o,1]. Hav1ng set § = nx/l, this amounts to finding the expansions of g(8) = [8/n
on [0, n], which we have done above., Namely, for 0 < 8 < n we have

10 203 (=t I 4 1
= n%:-—’—1———51nn9=§~ﬁzl:mms(2”"l)9,

so for 0 < x <,

I ~ 27 i

>

it
s
....Mg

(=0" xS 1 2n— D)rx
A sin —> = —7;2—;(2}1—1)2005( )X

Finally, what if we.wish to use an interval of length / whose left endpoint is
not 0, say [a, a + {17 Simply apply the preceding formulas to g(x) = f(x + a);
we leave it to the reader to write out the resulting formulas for f(x).

EXERCISES

In Ex'ercises 1-6, find both the Fourier cosine series and the Fourier sine series of
the given function on the interval [0, z]. Try to use the results of Table 1, §2.1
rather than working from scratch. To what values do these series converge’ whm;
§=0and 8 = n?

1. f(6)=1.

2. f(B)=mn-86.

3. f(8) =sin#.
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5. f(8) = §%. (For the sine series, use entries 1 and 17 of Table 1.) . .
6. f(B)=6for0<8< %7:, f(@) =z -0 for %n < 8 < n. (For the sine series,
use entry 11 of Table 1, and for the cosine series, entry 2.)
In Exercises 7-11, expand the function in a series of the indicated type. Fpr
example, “sine series on [0, /]” means a series of the form 3~ bx sin(nnx/ ). Again,
use previously derived results as much as possible.
7. f(x) = 1; sine series on [0, 6x].
8. f(x) =1 - x; cosine series on [0, 1]. ‘
9. flx)=1Ffor0<x <2, fx)=-1for2<x<4 cosine series on {0, 4].
10. f(x) = Ix — x*; sine series on [0, /]. '
11. f(x) = e*; series of the form 370 cne?™"* on [0, 1].
12. Suppose f is a piecewise continuous function on [0, 7] sgch thalt1 f(6) =
f(z - 8). (That is, the graph of f is symmetric about the line 0 = sm.) Let
an and b, be the Fourier cosine and sine coefficients of f. Show that an = 0
for n odd and by = 0 for n even.

2.5 Some applications

At this point we are ready to complete the solutions of the boundary value prgb—
lems that were discussed in §1.3. The first of these problems was ghe one describ-
ing heat flow on an interval [0, /], where the initial temperature 1s f(x) and the

endpoints are held at temperature zero,

U = Kixx, u(x,0) = f(x) forx€[0,1], u(0,t) =u(l,t)=0 fort>0,

and we derived the following series as a candidate for a solution:

2.2
—n*7 kt) ) IRX

u(x,t):anexp( 7 T
1

o
where f(x)=_ bnsin ﬂ;-i
i

(2.25)

The questions that we left open were: (1) Can the initial temperature [ be ex-
pressed as such a sine series? (2) Does this formula for u actually define a solution
of the heat equation with the given boundary conditions? We now know that the
answer to the first question is yes, provided that f is piecewise sxpooth on [0,]
(certainly a reasonable requirement from a physical point of view): we have
merely to expand f in its Fourier sine series (2.24). Let us therefore address the
second guestion. ’ .

The individual terms in the series for u solve the heat equation, by the way
they were constructed. Moreover, when ¢ > O the factor exg(—nznzkt /1) tenfis 1o

R T ¥ SO PRPS B
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since the coefficients b, tend to zero as n — co and in particular are bounded by
some constant C, for any positive € we have

b -n?7%kt\ . nnx ke
n €XP 72 sin 7 7

The same sort of estimate also holds for the first f-derivative and the first two
x-derivatives of the terms of the series for u, with an extra factor of #2 thrown
in, Since }.7° nke—dn* converges for any &, we see by the Weierstrass M -test that
these derived series converge absolutely and uniformly in the region 0 < x < /,
t > €, and we deduce that termwise differentiation of the series is permissible.
Conclusion: u is a solution of the heat equation.

As for the boundary conditions, it is evident that u(0,1) = u(l,¢) = 0, since
all the terms in the series for # vanish at x = 0,/, and u(x,0) = f(x) by the
choice of the coefficients b,. However, as we pointed out in §1.1, we really
want a bit more, namely, the continuity condition that u(x,¢) should tend to
zero as x — 0,/ and to f(x) as t — 0. The preceding discussion shows that
the first of these requirements is always satisfied: for each ¢ > 0, the series for
u(x, ) converges uniformly on [0, /],s0 u(x, ) is a continuous function of x. (In
particular, as x — 0 or x — /, u(x, t) approaches u(0, £) or u(/, t), which are zero.)
Moreover, if f is continuous and piecewise smooth on [0,/] and f(0) = f(/) = 0,
then the odd periodic extension of f is continuous and piecewise smooth, so
3 1bn| < oo by Theorem 2.5. The Weierstrass M-test then shows that the series
for u converges uniformly on the whole region 0 < x </, t > 0, and hence that
u is continuous there; in particular, u(x, ) — u(x,0) = f(x) as t — 0.

If f has discontinuities or is nonzero at the endpoints, it is still true that
u(x,t) — f(x) as t — 0 provided that 0 < x < / and f is continuous at x, but the
proof is more delicate. (See Walker [53], §4.7.) We shall not concern ourselves
with such technical refinements, as we have already established the main point:
under reasonable assumptions on the initial temperature £, the function u satisfies
all the desired conditions.

One question we have not really settled is the uniqueness of the solution.
That is, we have constructed ome solution; is it the only one? The answer is
yes. One can argue that any solution u(x,t) must be expandable in a Fourier
sine series in x for each ¢ and then use the differential equation to show that the
coefficients of this series must be the ones we found above. Alternatively, one
can invoke some general uniqueness theorems for solutions of the heat equation;
see John [33] or Folland [24]. Similar considerations apply to the other problems
we solve later, and we shall not worry about uniqueness from now on except in
situations where pitfalls actually exist,

Lest the reader become too complacent, however, let us briefly consider the
problem of solving the heat equation for times ¢ < 0 — that is, given the temper-
ature distribution at time ¢ = 0, to reconstruct the distribution at earlier times. If
we take ¢ < 0 in (2.25), the factors e kP yond rapidly to infinity rather than
zZero as n — co, with the result that the series for u(x, ) will almost certainly di-

17 ~ e .
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rapidly as n — co. Thus (2.25), in general, dogs not give a soluti.on 10 ‘the‘heat
equation when ¢ < 0. This is not merely a failure of mathemauca}l te.chl}lque,
however. The initial value problem for the time-reversed heat equauor} is S}mply
not well posed, a reflection of the fundamental physical fact that the direction of
time is irreversible in diffusion processes. One can mix hot water and co%d water
to get warm water, but one cannot then separate the warm watet back into hot
and cold components! More to the point, one cannot t.eu by examining the warm
water which part was initially hot and which part was initially cold, or what their
initial temperatures were.

Exactly the same considerations apply to the problem of heat flow on [0, /]

with insulated endpoints,

Uy = kllxx, u(X,O) = f(.x), u)c{O, i) = ux([, t) = O,

whose solution is

> —n?n’kt nmx
u(x,t) = $ag+ Yy anexp ( 7 cos —=,
U

where
nnx

f(x) = yap+ z}:an 008~

The only difference is that now we expand f in its Fourier cosine series (2.22).

; . . 1 _
FIGURE 2.6. The solution (2.25) of the heat equation with k=3 1=1,
by =-1, by =~} and by = 0 for n > 2, on the region 0 < x < ,0<t< 1.
Let us pause a moment to see what these solutions tell us about tpe physics
of the situation. In the limit as t — oo, the exponential factors all vanish, so the
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are held at temperature 0 and %ag in the case of insulated endpoints. The first
of these is easy to understand: the interval [0, /] comes into thermal equilibrium
with its surroundings. As for the second, if we recall that

!
a=1 [ rixax,

we see that the limiting temperature %ao is simply the average value of the initial
temperature. In other words, no heat enters or escapes, so the various parts of
the interval simply come into thermal equilibrium with each other. Moreover, in
both cases, the high-frequency terms (i.e., the terms with # large) damp out more
guickly than the low-frequency terms: this expresses the fact that the diffusion
of heat tends to quickly smooth out local variations in temperature. A simple
illustration of these assertions can be found in Figure 2.6.

Now let us turn to the problem of the vibrating string:
up = Cuxx,  u(x,0) = f(x), u(x,0)=g(x), u(0,f)=u(l,t) =0

According to the discussion in §1.3, we should expand f and g in their Fourier
sine series,

oo oo
fx) =3 basinZE, g(x) =) Busin 7%, (2.26)
1 1
and then take
o0
u(x,t)=3 sin @- (bn cos mm;ct + fl—% sin -—~—-m;Ct> . (2.27)
]

Here the analysis is more delicate than for the heat equation, because there are
no exponentially decreasing.factors in this series to help the convergence. The
series (2.27) for u is likely to converge about as well as the sine series for f and
g, but if we differentiate it twice with respect 1o x or ¢ in order to verify the wave
equation, we introduce a factor of n2%; and this may well be enough to destroy
the convergence.

We can avoid this difficulty by making sufficiently strong smoothness as-
sumptions on f and g. For instance, let us suppose that f and g are of class C(®
and C'?, respectively, that f”” and g” are piecewise smooth, and that f, g, f”,
and g” vanish at the endpoints 0 and /. These conditions guarantee that the odd
periodic extensions of f and g will have the same smoothness properties (even
at the points nx), and hence, by Theorem 2.6, that the coefficients b, and B, will
satisfy

bl < Cn™%,  |Baj<Cn7

Now the nth term in the series (2.27) will be dominated by n™*, and if we
differentiate it twice in sither x or ¢ it is ¢till daminated hy #~2 Sines 0 5 —2
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converges, the M-test guarantees the absolute and uniform convergence of the
twice-derived series, and we are in business.

This is not entirely satisfactory, however. It is physically reasonable to as-
sume that f and g are continuous and perhaps piecewise smogth_, put one may —
and indeed should — have the feeling that the extra differentiability asgsumpﬂops
are annoyances that reflect a failure of technique rather than a real difficulty in

the original problem. ' ‘ - y
We can obtain more insight into this problem by recalling the trigonometric

identities
sinacosh = % [sin(a +b)+sin{a— b)} , singsind = } {cos(a —b)~cos(a+ b)} ,

by means of which the series (2.27) can be rewritten

s ) 1 . nm,
u(x, 1) =.§ an sin Elﬁ(x +ct)+ 521:&1 sin T(X ~ct)
1

| & By nm 1 By onm N
+§z§;ﬁcos7~(x-ct)~zc§l:m c0s = (x + ct)

The first two sums on the right are just the Fourier sine series fqr f ,‘evalua_ted at
x - ct, and the last two are (up to constant factors) just the Fouger sine series for
g, integrated once and then evaluated at x £ ct. To §‘estate this: let us suppose
that f and g are piecewise smooth, so that the expansions (2.26) are va}x@ on the
interval (0,1). We use the formulas (2.26) to extend f and'g‘ from this interval
to the whole line; that is, we extend f and g to R by requiring them to be odd
and 2/-periodic. We then have

w(x, 1) = %—[ flr+et)+ flx—en] + EIZ G+ et~ Gl —en],  (2.28)

where G is any antiderivative of g. ' - . ‘ '
From this closed formula it is perfectly plain that if f is twice differentiable

and g is once differentiable, then u satisfies the wave equation, for
o2 R = f(x *ct 2.29)
‘é‘;c_g‘f(x:tC‘)—‘Ej—a‘ﬁf<XiCt> f(x £et), (

and likewise for G. Even here the differentiability assumptigns seem a bit art'1—
ficial; one would like, for example, to allow f to be a function w1t}1 corners in
order to model plucked strings. Indeed, in some sense the ﬁrs:& equation in (2.39)
should be correct, simply as a formal consequence of the chalp rule, even if f" is
ill-defined. The idea that is crying to be set free here is the notion of’a “weak solu-
tion” of a differential equation, which enables one to consider f unpt}ons U Fieﬁped
by (2.28) as solutions of the wave equation even when the requisite derivatives
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2.5 Some applications 53

Another point should be raised here. One does not have to go through
Fourier series to produce the formula (2.28) for the solution of the vibrating string
problem; an elementary derivation is sketched in Exercise 6 of §1.1. It is then
fair to ask what good the complicated-looking formula (2.27) is when the simple
(2.28) is readily available. There are two good answers. First, the trick in Exercise
6, §1.1, that quickly produces the general solution of the 1-dimensional wave
equation does not work for other equations (including the higher-dimensional
wave equation), whereas the Fourier method and its generalizations often do.
Second, although (2.28) tells you what you see if you look at a vibrating string,
(2.27) tells you what you hear when you listen to if. The ear, unlike the eye, has
a built-in Fourier analyzer that resolves sound waves into their components of
different frequencies, which are perceived as musical tones.* Typically, the first
term in the series (2.27) is the largest one, so one hears the note with frequency
2mc/l colored by the “overtones” at the higher frequencies 2znc/l with n > 1.

The difference in the convergence properties of the series solutions (2.25) and
(2.27) of the heat and wave equations reflects a difference in the physics: diffusion
processes such as heat flow tend to smooth out any irregularities in the initial
data, whereas wave motion propagates singularities. Thus, the solution (2.25) of
the heat equation becomes smoother as ¢ increases, and this is reflected in the
exponential decay of the high-frequency terms. (See the discussion of smoothness
versus rates of convergence at the end of §2.3.) However, any sharp corners in
the initial configuration of a vibrating string will not disappear but merely move
back and forth, as is clear from (2.28); hence there is no improvement in the
rate of convergence of the solution (2.27). (Compare Figures 2.6 and 2.7, which
show solutions of the heat and wave equations with the same initial values up 1o
a constant factor and the same boundary conditions; the initial variations damp
out in the first case, but not in the second.)

We shall see other applications of Fourier expansions of functions on an
interval in Chapter 4. Fourier expansions are also the natural tool for analyzing
periodic functions on the line. In practice, there are two principal sources of
such functions. The first is the angular variable in polar or cylindrical coordi-
nates or the longitudinal angular variable in spherical coordinates; in this context
periodicity is an immediate consequence of the geometry of the situation. The
other is physical phenomena that vary periodically (or approximately periodi-
cally) in time, such as certain types of electrical signals, the length of a day, daily
or seasonal variations in temperature, and so forth.

As an example, let us analyze the variations in temperature beneath the
ground due to the daily and seasonal fluctuations of temperature at the surface of
the earth. We shall concern ourselves only with the temperature near a particular
spot on the surface, over distances of (say) at most 100 meters. We therefore
neglect the fact that at great depths the earth is hotter than at the surface, and
we assume that (i) the earth is of uniform composition; (ii) the temperature at
the surface is a function f(¢) of time only, not of position; (iii) f(¢) is periodic

* Of course. this is an oversimolification.
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Figure 2.7. The solution (2.27) of the wave equation with / = ¢ = i,
by = -0.2, by = —0.1, by = 0 for n > 2, and By = 0 for all n, on the region

0<x<0<ig .

of period 1 and so has a Fourier series
oo -
f(t) - Z Cn‘?ant.
-0

(We may take the unit of time to be 1 year, so that the dominant terms in
the series will be n = +1, corresponding to seasonal variations, and n = 365,
corresponding to daily variations. With a bit more accuracy, we could take the
unit of time to be 4 years and the dominant terms to be 7 = £4 and n = +1461
(= +4 % 365%). Or, we could take an even longer period to account for long-term
climatic changes.) The boundary value problem to be solved is therefore

s = ktlxx for x>0, u(0,t) = f(1).

Since f is periodic in z, we expect u to have the same property, so we look for
solutions of the form

u(x,t) =3 Ca(x)e™™,

Taking on faith that this series can be differentiated termwise, we find that

o= ; o0 .
up =3 Q2min)Ca(x)e™™,  uxx =y Cy(x)e*™™.
= 2

Hence, taking into account the initial condition, we have

e Yrink TV OW () = 0. Col0Y = Can.
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Since the square roots of 2in are (1 +1)n'/2 if n > 0 and (1= )|n|*/2 if n < 0,
the general solution of this differential equation is

aexp<(1+i)\/z%X)+bexp<~(1+z’)1/—7;€—nx) if n>0,
aexp((l—i) lz}—;—ﬂx)—i~bexp(-—(1——i) %n—!x) if n<Q,
ax+b if n=0

In each case we must take a = 0 because of the physical requirement that the
temperature should remain bounded as x increases. (In effect we are imposing
a boundary condition at x = oo to supplement the one at x = 0.) The initial
condition then implies that = ¢,. Hence, upon grouping together the nth and
{(—n)th terms, we obtain the solution

u(x,t) =co+ »_exp («, / n_kr_z_ x>
1
X [cn exp (2m'nt — Iy % x) + C—p €Xp (—Znint +1i —7—%— x)] .

It is now easy to check that this function u really does solve the problem.

The main features to be noted here are the following. First, all of the non-
constant terms in u (the ones with n # 0) die out exponentially fast as x increases,
and the high-frequency ones die out faster than the low-frequency ones. (In ac-
tual fact, the daily variations in temperature become negligible at a depth of a
few centimeters, and the seasonal ones become negligible at a depth of a few
meters, where the temperature remains essentially constant at the annual mean
¢p.) Second, the temperature variations at depth x are out of phase with those
at the surface by an amount proportional to x and +/|n], because the heat takes
time to penetrate. For example, if the 7 = 1 term, representing the main seasonal
variations, is the dominant one, at depth x = v/nk the temperature is warmer in
winter and cooler in summer.

In considering the usefulness of Fourier series or any other sort of infinite
series, one should not lose sight of the fact that the partial sums of the series pro-
vide approximations to the full sum, and that such approximations may be just
what one needs to obtain a computationally manageable solution to a problem.
The questions about smoothness and rates of convergence that we have discussed
in some detail have a computational as well as a theoretical significance: rapidly
converging series such as (2.25) yield accurate answers much more readily than
slowly converging ones such as (2.27). An interesting discussion of rates of con-
vergence of infinite series, and the implications for numerical calculations, can
be found in Boas [7].

On the other hand, in many situations one knows the initial data only to a
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f(t) that varies periodically with the time ¢, and one may know the values of f
approximately from physical measurements. In this context the point of Fqurxer
analysis is that it is usually appropriate to take a trigonometric polynomial of
fairly low degree, whose coefficients are determined so as to fit the data well, as

a mathematical model for f.

EXERCISES

1. A rod 100 cm long is insulated along its length and at both ends. Suppose that
its initial temperature is u(x,0) = x (x incm, ¥ in °C, zinsec, 0 < x < 100),
and that its diffusivity coefficient k is 1.1 cm?/sec (about right if the bar is
made of copper).

a. Find the temperature u(x,?) for ¢ > 0. (It is something of the form
50 + 3°5° an(t) cos(nnx/100), and an(t) = 0 when n is even.)

b. Show that the first three terms of the series (i.e., 50+a; (¢) cos(nx/100)+
as(t) cos(3mx/100)) give the temperature accurately to within 1 unit
when ¢ = 60. Using this fact, find (0, 60), u(10, 60), and u(40, 60).

e 1 72 e 1 n? 1
int: — e AR N B P
Hint : 21:(2n—1)2 g S0 %:(2”_1)2 g g

¢. Find a number T > 0 such that u(x, ) is within 1 unit of its equilibrium
value 50 for all x whent > T.

2. Redo Exercises la and lc with k = .01 (a reasonable figure if the bar is
made of ceramic). Now how many terms of the series are needed to get an
accuracy of 1 unit when ¢ = 607?

3. Consider again the copper rod of Exercise 1 (k = 1.1). Suppose that the rod
is initially at temperature 100°C and that the ends are subsequently put into
a bath of ice water (at 0°C).

a. Assuming no heat loss along the length of the rod, find the temperature
u(x, t) at subsequent times.

b. Use your answer to find (50, ) numerically when ¢ = 30, 60, 300, 3600.

¢. Prove that your answers in (b) are correct to within 1 unit. (Hint: The
series for u(50, ¢) is alternating.)

4. Consider a vibrating string occupying the interval 0 < x < [. Suppose the
string is plucked in the middle in such a way that its initial displacement
u(x,0) is 2mx/l for 0 < x < 3/ and 2m(l — x)/I for 31 < x <[ (so the
maximum displacement, at x = 4/, is m), and its initial velocity u(x,0) is
Zero. )

a. Find the displacement u(x,?) as a Fourier series.

b. Describe u(x, ) in the closed form (2.28) and show that at times ¢ > 0,
ulv A (ac a fanctinn of ¥) tynicallv looks like the following figure:
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5. Consider a vibrating string as in Exercise 4. Suppose the string is plucked at
x = a instead of x = 1/, so the initial displacement is mxjafor0<x<a
and m(! - x)/({ — a) for a < x <, and the initial velocity is zero.

a. Find the displacement u(x, ) as a Fourier series. (Entry 11 of Table 1,
§2.1, will be helpful.)

b. Convince yourself that the terms with large n contribute more to u(x, t)
when a becomes closer to /. (Musically: plucking near the end gives a
tone with more higher harmonics.)

6. Suppose the string in Exercise 4 is initially struck in the middle so that its
initial displacement is zero but its initial velocity u;(x, 0) is 1 for [x — %l |<d
and O elsewhere. Find u(x,1) fort > 0.

7. Suppose that the temperature at time ¢ at a point on the surface of the earth
is given by

u(0,1) = 10 — 7cos 2nt — 5cos 27(365)¢.

(Here u is measured in °C and ¢ is measured in years; the coefficients are
roughly correct for Seattle, Washington.) Suppose that the diffusivity coeffi-
cient of the earth is k = .003 cm?/sec ~ 9.46 m?/yr.
a. Find u(x,1) for x > 0.
b. At what depth x do the daily variations in temperature become less than
1 ynit? What about the annual variations?

2.6 Further remarks on Fourier series

There is much more to be said about Fourier series than is contained in this
chapter. Some good references for further information on both the theoretical
aspects of the subject and its applications are the books of Dym-McKean [19],
Korner [34], and Walker [53]. Also recommended is the article of Coppel [15] on
the history of Fourier analysis and its influence on other branches of mathematics,
and the articles by Zygmund, Hunt, and Ash in [2]. Finally, the serious student
of Fourier analysis should become acquainted with the treatise of Zygmund [58],
which gives an encyclopedic account of the subject.

We conclude this chapter with a brief discussion of a few other interesting
aspects of Fourier series.

The transform point of view
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regarded as a function f whose domain is the integers:

Fm=ca= [ s ae.

The mapping f — f is thus a fransform that converts periodic functiqns on t.he
line to functions on the integers. The inverse transform is the operation which
assigns to a function ¢(n) on the integers (that decgys §uitaply as n — c_x;) tt_xe
function 3°°° ¢(n)e™"®. In principle all the information in f is also contained in
its transform f, and vice versa, but the information may be encoded in a more
convenient form on one side or the other. For example, Theorem 2.2 shows that
the transform converts differentiation into a simple algebraic operation: f(n) =
i nf(n). We shall return to this point of view in Chapter 7.

Comparison with Taylor series

Perhaps the most well known and widely used type of infinite series expansion
for functions is the Taylor series, and it is of interest to compare the features of

Taylor series and Fourier series. . .
In order for a function f(x) to have a Taylor expansion about a point Xp,

=3 L0 gy, -mol <,
D

£ must have derivatives of all orders at xo. If it does, the coeficients of the T'aylor
series are determined by these derivatives, and hence by the values c_)f fin an
arbitrarily small neighborhood of xp. The rate at which these coefﬁmems grow
or decay as n — oo is related to the radius of convergence of the series and hence
to the distance from X, to the nearest singularity of f (in the comple;s p1a9e). In
general the partial sums of the Taylor series provide excellent approximations to
f near x, but are often of little use when |x — xp| is large. o

In contrast, a function f need have only minimal smoothness properties in
order to have a convergent Fourier expansion

flx)= i ((21)’1f;+2’f(y)e"i””y/’dy) el x e (a, a+2).

-0

The coefficients of this series depend on the values of f over the entire ipte_r\'ral
(a, a+2[). The rate at which they decay as 7 — oo is related‘to the diﬁ‘erenuabﬂ%ty
properties of f, or rather of its periodic extension. The partial sums of the Fourier
series will converge to f only rather slowly if f is not very smooth, but they tend
to provide good approximatiens over the whole intervaln(a, a+2D.

Thus Taylor series and Fourier series are of quite different natures: the first

one is intimately connected with the local properties of f near xp, whereas tl'ae
. oA e Aalend mmmmemntion ~f £ Thers ie a citnatinon  hnwever. 1n

2.6 Further remarks on Fourier series 59

which the two can be seen as aspects of the same thing. Namely, suppose f is
an analytic function of the complex variable z in some disc |z - zg| < R. If we
write z — zg in polar coordinates as re’?, the Taylor series for f about z; turns
into a Fourier series in 6 for each fixed » < R:

o0 o0 .
Y an(z - z0)" = Y (anr™e’™.
0 0

The formula (2.5) for the Fourier coefficients, in this case, is nothing but the
Cauchy integral formula for the derivatives of f at zy. This connection between
Fourier analysis and complex function theory has many interesting consequences,
which are discussed in more advanced books such as Dym-McKean [19] and
Zygmund [58].

Convergence of Fourier series

The study of the convergence of Fourier series has a long and complex history.
The convergence theorems we have presented in §§2.2~3 are sufficient for many
purposes, but they do not give the whole picture. Here we briefly indicate a few
other highlights of the story. In the first place, the hypotheses of our Theorem 2.1
can be weakened. The same conclusion is obtained if we assume only that f is of
“bounded variation” on the interval [-=, z], which means that it can be written
as the difference of two nondecreasing functions on that interval. (It is not hard
to show that piecewise smooth functions have this property.) On the other hand,
it has been known since 1876 that there are continuous periodic functions whose
Fourier series diverge at some points, and for almost a century it was an open
question whether the Fourier series of a continuous function could be guaranteed
to converge at any point. An affirmative answer was obtained only in 1966, with
a deep theorem of L. Carleson to the effect that the Fourier series of any square-
integrable function f must converge to f at “almost every” point, in a sense that
we shall describe in §3.3. See the article by Hunt in [2].

One fundamental fact that has emerged over the years is that, in many sit-
uations, simple pointwise convergence of a series is not the appropriate thing to
look at; and there are many other notions of convergence that may be used. For
example, there is uniform convergence, which is stronger than pointwise conver-
gence; there is also “pth power mean” convergence, according to which the series
3°%° fa converges to f on the interval [a, b] if

?
dx = 0.

bl N

D falx) = f(x)

1

lim
N—oo Jg

We shall say much more about the case p = 2 in the next chapter. There are also
ways of summing divergent series that can be used to advantage; we shall now
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It is easy to see that if a sequence {an} converges to 4, then the average
k=!'53% g, of its first k terms also converges to a as k — oo, but these averages
may converge when the original sequence does not. For example, the sequence

1,0,1,0,1,0,1,0,...

is divergent; but the average of its first k terms is (k + 1)/2k or 1/2 according as
k is odd or even, and this tends to 1/2 as K — co. Now, given an infinite series
S°5° bn with partial sums sy = S°F bn, the average of its first k£ + 1 partial sums,

1
m(30+51 + Sk,
is called its kth Cesaro mean, and the series is said to be Cesaro summable to the
number s if its Cesaro means (rather than just its partial sums) converge 10 §.

We then have the following theorem, due to L. Fejér.

Theorem 2.8. If f is 2n-periodic and piecewise cOntinuous on B, then the Fourier
series of f is Cesaro summable to %[ JICESE N (0+)] at every 0. Moreover, if f is
everywhere continuous, the Cesaro means of the series converge to f uniformly.

The proof of this theorem is similar in spirit to that of Theorem 2.1; it can
be found, for example, in §2 of Korner [34] or §2.7 of Walker [53]. The signif-
jcance of the theorem is twofold. First, it gives a way of recovering a piecewise
continuous function f from its Fourier coefficients when the Fourier series fails
to converge. Second, even when the Fourier series of f does converge, its Cesdro
means tend to give better approximations to f than its partial sums: for example,
they converge uniformly to f whenever f is continuous, whereas the partial sums
converge uniformly only under stronger smoothness conditions (cf. Theorem 2.5).

The Gibbs phenomenon

Suppose f is a periodic function. If f has a discontinuity at xp, the Fourier
series of f cannot converge uniformly on any interval containing xg, because the
uniform limit of continuous functions is continuous. In fact, for the Fourier
series of a piecewise smooth function f, the lack of uniformity manifests itself
in a particularly dramatic way known as the Gibbs phenomenon: as one adds
on more and more terms, the partial sums overshoot and undershoot f near the
discontinuity and thus develop “spikes” that tend to zero in width but not in
height. One can see this in Figure 2.8, which shows the fortieth partial sum of
the Fourier series of the sawtooth wave function

f(6)=n—8for0< 0 <2z, f(6 + 2nm) = f(8).

A precise statement and proof of the Gibbs phenomenon for this function is
outlined in Exercise 1. It can be shown that the same behavior occurs at any
discontinuity of any piecewise smooth function. See Korner [34] and Hewitt-
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FIGURE 2.8. Graph of 21971 sinng, —27 < 6 < 27 (an ill i
. ’ t
the Gibbs phenomenon). (a0 Hustration of

EXERCISE

L. Recal} from Table 1, §2.1, that f(0) = 23°5° n~!sinn6 is the 2n-periodic
function that equals 7 — 8 for 0 < 8 < 27. Let

N sinng
en(0) =23 ——-(n-0),
1

20 thzat £(0) is the difference between f(8) and its Nth partial sum for 0 <
< LTC.
a. Shgw that gj(6) = 2nDy(8) where Dy is the Dirichlet kernel (2.10).
b. Using (2.12), show that the first critical point of gy (6) to the right of
zero oceurs at Oy = /(N + 1), and that

Ox sin(N + §)

en(On) = | 546 r.

0 sin 16

¢. Show that
: _ s [Tsing
A}}_IgogN(GN)‘“Z/O TdQS"ﬂ.

(Hint: Let.qﬁ = (N + $)6.) This limit is approximately equal to .562.
Th}ls the difference ‘between f(8) and the Nth partial sum of its Fourier
series develops a spike of height .562 (but of increasingly narrow width)

just to the right of 8 = 0 as N — oo. (There is another such spike on
the left.)




CHAPTER 3
ORTHOGONAL SETS OF FUNCTIONS

Fourier series are only one of a large class of interesting and useful infinite se-
ries expansions for functions that are based on so-called orthogqnal systems or
orthogonal sets of functions. This chapter is devoted to explammg the general
conceptual framework for understanding such systems, and to showmg'how t}ley
arise from certain kinds of differential equations. Underlying these ideas is a
profound analogy between the algebra of Fourier series and the algebra of n-
dimensional vectors, which we now investigate.

3.1 Vectors and inner products

We recall some ideas from elementary 3-dimensional vector algebra. and recast
them in a more general form. We identify 3-dimensional vectors with ordered

triples of real numbers; that is, we write
a=(a,a,, as) rather than  a=a;i+ @i+ ok
The dot product or inner product of two vectors is then defined by
a-b=ab + ayby + azbs,
and the norm or length of a vector is defined by
lal| = va-a=/a} + a2 +al.

We propose to generalize these ideas in two ways: by working in an arbitrary
number k of dimensions, and by using complex numbers rather thag real ones.
This generalization is not just a mathematical fantasy. Although k-d1.mensxonal
vectors do not have an immediate geometrical interpretation in physical space,
they are still useful for dealing with problems involving k independent variables.

For our purposes, the main motivatipn for the use of complex numbers is their
connection with the exponentials ¢'%: but it should be notegi thgt tl_l_e.use ‘of
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ideas we shall be discussing, the reader should just think of real 3-dimensional
vectors.
A (complex) k-dimensional vector is an ordered k-tuple of complex numbers:

a=(a,a,...,0).

The vector a is called real if its components a; are all real numbers. Addition
and scalar multiplication are defined just as in the 3-dimensional case, but now
the scalars are allowed to be complex:

a+b=(a;+by,....ar + by),
ca=(cay,...,cay) (ceC).
We denote the zero vector (0,0,...,0) by 0, and we denote the space of all com-

plex k-dimensional vectors by C*.
The inner product of two vectors is defined by

(a,b) =61151 +a232+---+ak5k, (3.1)
and the norm of a vector is defined by
_ _N\12 /2
lal = (a,0)' = (@@ + - +aa)  =(al++lgf) . (32)
The reason for the complex conjugates in the definition of the inner product is
to make the norm (3.2) positive, for we wish to interpret ||a]| as the magnitude
or length of the vector a. (Recall that the absolute value of a complex number
z = x+iy is (x2+»?)1/2, and this is (zZ)!/2 rather than (z2)!/2.) Notice, however,
that for real vectors, (3.1) and (3.2) become

@b)=aiby+-+aby, Jal|l=(a}+- +a})?

the obvious generalization of the familiar 3-dimensional case.

A word about the notation: The inner product (a, b) is often denoted by a-b
or (a,b). Also, in the physics literature it is customary to switch the roles of a
and b, that is, to put the complex conjugates on the first variable rather than the
second. This discrepancy is regrettable, but by now it is firmly entrenched in
common usage.

The inner product (3.1) is clearly linear as a function of its first variable but
antilinear or conjugate linear as a function of its second variable; that is, for any
vectors a, b, ¢ and any complex numbers z, w,

(za+wh, ¢) = z{a,¢) + w(b,c),

(a, zb+ we) = Z(a,b) + W(a, c) (3-3)
Also, the inner product is Hermitian symmetric, which means that
(b,a) = (a, by, (3.4)
and the norm satisfies the conditions
fcall = clllal  (ceC), (3.5)
lalj >0 foralla#0, (3.6)

Using these facts, we now derive some fundamental properties of inner products
and norms.
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Lemma 3.1. For any a and b in CF,
|2+ b]| = |ja||> + 2 Re(a, b) + [[b]°.

Proof By (3.3), (3.4), and the definition of the norm,

la+bj?=(a+b a+b) = (a.8) + (,0) + (b,a) + (b, b)

= (a,8) + (a,b) + (@B} + (b,b) = ||a]|* + 2Re(a, b) + [[b]}*. i
The Cauchy-Schwarz Ineguality. For any a and b in CF,
|(@,)| < llal b (3.7)

Proof We may assume that b # 0, since otherwise both sides of (3.7) are 0.
Also, neither ‘(a, b}i nor ||a]| ||b|| is affected if we multiply a by a scalar of absolute

value one, so we may replace a by ca, with |¢| = 1,s0asto make {a,b) real. (That
is, if (a,b) = re'?, we take ¢ = e"a.) Assuming then that (a,b) is real, by Lemma
3.1 we see that for any real number ¢,

0< fla+ rb|? = jal| + 2t(a, b) + £[b>.

This last expression is a quadratic function of ¢, since ||bl| # 0, and (by el;mentax:y
calculus) it achieves its minimum value at ¢ = —(a, b) /|Iblj%. If we substitute this
value for ¢, we obtain

2 Lab? @b’ oo o2 (@b’
0< ol ~ 255 + S 1P = 18l — S
or
0 < flall?ib]l* - (&, ),
which, since (a, b) is assumed real, is equivalent to (3.7). i
The Triangle Inequality. For any a and b in ck,
lla+ bl < lafl + bl (3.8)

Proof By Lemma 3.1, the Cauchy-Schwarz inequality, and the fact that
Rez < |z|, we have
lla+bjf? = |lal|* + 2 Rea, b) + [b]}*
< flaif + 2/all b)) + [[bl}*

(et w2 ]
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a+b b

a

Ficure 3.1. The sum of two vectors.

Geometrically, the triangle inequality just says that one side of a triangle can
be no longer than the sum of the other two sides; see Figure 3.1. This picture is
perfectly accurate, for the vectors a, b, and a + b always lie in the same plane no
matter how many dimensions they live in.

We recall that two real 3-dimensional vectors are orthogonal or perpendicular
to each other precisely when their inner product is zero. We shall take this as
a definition in the general case: two complex k-dimensional vectors a and b are
orthogonal if (a,b) = 0. The vectors a;,4;,...,8, are called mutually orthogonal
if (a;,a;) = 0 for all 7 # j. With this terminology, we have a generalization of
the classic theorem about the lengths of the sides of a right triangle:

The Pythagorean Theorem. [fa,,a,,...,a, are mutually orthogonal, then

oy + 82+ -+ anl|? = ag > + lagl* + - + |anl®. (3.9)

Proof: We have
12 +"'+anH2 =(ap+ - +an, 8+ +ay).

If we multiply out the right side by (3.3), all the cross terms vanish because of
the orthogonality condition, and we are left with

(@, a) +- + (an,80) = ag? + - + [|an]*. I

Important Remark. The proofs of the Cauchy-Schwarz and triangle inequal-
ities and the Pythagorean theorem depend only on the properties (3.3) and (3.4)
of the inner product and the definition [|a]| = (a,a)!/?, not on the specific formula
(3.1). They therefore remain valid for any other “inner product” that satisfies
(3.3) and (3.4) and the “norm” associated to it.

Some more terminology: We say that a vector u is normalized, or is a unit
vector, if |luj] = 1. Any nonzero vector a can be normalized by multiplying it by
the reciprocal of its norm: If u = ||aj|~'a, then |ju| = ||a]|~!|ja| = 1. We shall call
a collection {a;,a,...} of vectors an orthogonal set if its elements are mutually

orthogonal and nonzero, and an erthonormal set if its elements are mutually
nrthononnal and normalized (Ses Fionre 3 7)Y O rrnres anv nrthnonnal eot ran
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be made into an orthonormal set by normalizing each of its elements. Thus, a
set {a;,a,...} is orthonormal if and only if

(ai,aj) = 5,'/', (3.]0)
where J;; is the Kronecker J-symbol:

oy ifi=, 311
5’!‘“{0 it . (3.11)

FiguURrE 3.2. An orthonormal set of vectors.

The vectors in any orthogonal set {a;,...,a,} are linearly independent; that

is, the equation
ciay+-+cnan=10

can hold only when all the scalars ¢; are zero. To see this, take the inner product
of both sides with a; (1 <j < n); because of the orthogonality and the fact that
a; # 0, the result is

cj(a,a;) =cjllajli> =0, hence ¢;=0.
It follows that the number of vectors in any orthogonal set in Ck is at most k,
since C* is k-dimensional. . .
An example of an orthonormal set of k vectors is given by the standard basis
vectors {eq,...,e;}, where
e;=(0,...,0, 1,0,...,0) (1 in the jth position, 0 elsewhere).

For any a = (ay,...,a;) € C*, we clearly have

a=a1é1+---+akek,

so a is expressed in a simple way as a linear combination of the e ;’s. But some-
times it is more convenient to use other orthonormal sets that are adapteq toa
particular problem, and here too there is a simple way of expressing arbitrary

b o Vsamrme mmmaliantinane Af tha arthAannrmal vertors
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Indeed, suppose {uy,...,u;} is an orthonormal set in CX. If a vector a € CF
is expressed as a linear combination of the u;’s,

= C1Uy + o+ Cp Yy,

by taking the inner product of both sides with u; and using (3.10) we find that
the coefficients ¢; are given by

¢i=(au) (1<j<k). (3.12)

Conversely, if a is any vector in‘C”, we may define the constants ¢,...,c, by
(3.12) and form the linear combination

8= Cjuy + -+ .
Then the difference b = a — 2 is orthogonal to all the u;’s:
(b,w;) = (a,u;) ~ @,u;) =¢;—¢; =0.

But this means that b = 0, for otherwise {uy,...,u;, b} would be an orthogonal
set with k + 1 elements, which is impossible. In other words, & = a, and we have
the following result,

Theorem 3.1. Let {uy,...,u;} be an orthonormal set of k vectors in C*. For any
a € C* we have ‘
a={(8u)n + -+ (a,8)u.

Moreover,

ol = [(a, w2+ + (o, ug) |

Proofr The first assertion has just been proved, and the second one follows
from it by the Pythagorean theorem. ]

EXERCISES
1. Show that [|a +b||> + |la - b]|* = 2(Ha||2 + Hb[[2> for all a,b € CF.
2. Suppose {yy,...,¥x} is an orthogonal set in C¥, not necessarily normalized.
Use Theorem 3.1 to show that for any a € CK,

+ (8, Y1) ¥k '

R

fly1?

3. Lety; =(2,3i,5) and 5 = (34,2,0).
a. Show that (y;,y,) = 0 and find a nonzero y3 that is orthogonal to both
y1 and y3.
b. What are the norms of yy, ¥, and y3?
¢. Use Theorem 3.1 or Exercise 2 to express the vectors (1,2,37) and

N1 O ne Hensne rmmshidnntinens ~af ar. 2. awd wr
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4. Letwy = $(1,2i,-21,0),u = 1(2-41,-2,1,0), u3 = 15 (4+21, 5+81,4+101,0),
and uy = (0,0,0,1).
a. Show that {uy, ..., us} is an orthonormal set in C*.
b. Express the vectors (1,0,0,0) and (2,10-i,10-94,-3) as linear combi-
nations of uy,...,us by using Theorem 3.1.

5. Suppose {u;,..., U} is an orthonormal set in C* with m < k. Show that for
anya € C* there is a unique set of constants {cy, ..., cm} such that a—3y 1" c;u;
is orthogonal to all the u;’s, and determine these constants explicitly. (Hint:
Consider the proof of Theorem 3.1.)

Exercises 6-8 deal with k x k complex matrices T = (T;;). We recall that if T =
(T;;) and § = (S;;) are k x k matrices, T'S is the matrix whose (i7)th component
is 37, T3S, and ifa € CF, Ta is the vector whose ith component is 3 ; 7;;a;. The
(Hermitian) adjoint of the matrix T is the matrix T~ obtained by interchanging
rows and columns and taking complex conjugates, that is, (77);; = Tj;.

6. Show that (Ta,b) = (a, 7*b) for all a,b € C*.

7. Show that if T = T*, the “product” defined by (a,b);7 = (Ta,b) satisfies
properties (3.3) and (3.4).

8. Let t; = (T4, ..., Tx;) be the vector that makes up the jth row of 7. Show
that the followmg properties of the matrix T are equivalent. (Hint: Show
that the (ij)th component of T*T is (t;,t;).)

(i) {t,...,t} is an orthonormal basis for C.
(ii) T*T is the identity matrix, i.e., (T"T);; = dy;.
(iii) ||Tal| = |ja|| for all a € C*.

9. Show that |(a,b)| = ||a]| |b|| if and only if a and b are complex scalar multiples
of one another, and that ||a+bl| = ||a}|+|[b]| if and only if a and b are positive
scalar multiples of one another. (Examine the proofs of the Cauchy-Schwarz
and triangle inequalities to see when equality holds.)

3.2 Functions and inner products

A vector a = (day, ...,4;) in C can be regarded as a function on the set {1,. Lk}
that assigns to the mteger j the jth component a(j) = a;, and with this notauon
we can write the inner product and norm as follows:

k

k 1/2
(ab) =3 a()b(j), lall= (Z [a(j)|2) : (3.13)
: 1

1

We now make a leap of imagination: Consider the space PC(a, b) of piecewise
continuous functions on the interval [a, b], and think of functions f € PC(a, b) as
infinite-dimensional vectors whose “components” are the values f(x) as x ranges
over the interval [a, b] The opera‘uons of vector addltmn and scalar multiplica-

oo LA .
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constants. To define the inner product and the norm, we simply replace the sums
in (3.13) by their continuous versions, i.e., integrals:

1/2
(f8) = / F)E@) dx, Hfl|=(/ablf(x)lzciX) . (3.14)

This inner product on functxons evidently satisfies the linearity and symmetry
properties (3.3) and (3.4), and it is related to the norm by the equation ||f]| =
(f, N2, Hence the Cauchy-Schwarz inequality, the triangle inequality, and the
Pythagorean theorem remain valid in this context, with the same proofs. Explicitly,
in terms of integrals, they say the following:

J / f(x de\/ g(x)2dx,  (3.15)
] b b o
\/ j If(x)+g(x)!2dxs\/ / If(X)t2dx+\/ [ lerax, (16

2 n b
dx = Z/ 01 dx
1 a

b -
when /ﬁ(x)fj(x)dx=0 for i # j.

/ f(x)elx)dx| <

and

(3.17)

The homogeneity property (3.5) of the norm, i.e., licf] = |c|||f]}, is clearly
valid in the present situation, but there is a slight problem with the positivity
property (3.6). The integral of a function is not affected by altering the value
of the function at a finite number of points, so if f is a function on [a, b] that
is zero except at a finite number of points, then || f]] = O although f is not the
zero function. For the class PC(a, b) with which we are working, there are two
ways out of this difficulty. One is to use the convention suggested by the Fourier
convergence theorem, that is, to consider only functions f € PC(a,b) with the
property that

f) = [flx-)+ flx+)] forallxe(ab), fla)=fla+), f(b)=f(b-).

If f € PC(a,b) satisfies this condition and f(xg) # 0, then |f(x)| > 0 on some
interval containing xp, and hence || f|| > 0. (See Exercises 6 and 7.) The other
is simply to agree to consider two functions as equal if they agree except at
finitely many points. The reader can use whichever of these devices seems most
comfortable; at any rate, we shall not worry any more about this matter.

The concepts of orthogonal and orthonormal sets of functions are defined
just as for vectors m Ck and we can ask whether there is an analogue of Theo-
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arbitrary f € PC(a,b) as (f, ¢n)én? Here, for the first time, we h_ave to con-
front the fact that the space PC(a,b), unlike Ck, is inﬁnite—dimegsmnal. This
means, in particular, that we cannot tell whether the set {¢»} contains “enough

functions to span the whole space just by counting how many functions are init;

after all, if one removes finitely many elements from an infinite set, there are st.ill
infinitely many left. It also means that the sum 3 (f, ¢n)¢n Will be an infinite
series, so we have to worry about convergence. Hence there is some work 1o be
done; but we can see that we are on the track of something very interesting by
reconsidering the results of the previous chapter in the light of the ideas we have

just developed.
Consider the functions

$n(x) = (2m) V%™, n=0,£1,%2,...
We regard these functions as elements of the space PC(-r,n); we then have

| I I — 1 /" ime {1 fm=n,
(¢m»¢n>=Q‘E/_nelmxemxdxzﬂf_nel(m n)xdx—{() if m # n.

Thus {¢n}% is an orthonormal set. Moreover, if the Fourier coefficients ¢, of
f € PC(~n, =) are defined as in Chapter 2, we have

on= g [ s dn = o [ e dx = 207 )

and hence
S e = 3 [@m) V2 f, )] [(20) 2n(x)] = S i),

Thus, the Fourier series of f is just its expansion with respect to the orthonormal
set {¢n}, as one would expect from the discussion in §3.1! .
Let us try this again for Fourier cosine series on the interval [0,z]. From

the trigonometric identity
cosacosh =} [cos(a + b) + cos(a — b)}
and the fact that

" coskxdx = k~lsinkx|f =0 fork#0,
/O COSEXEX=\x=n for k =0,

we see that for m,n > 0,

T 1 n
/ cosmx cosnx dx, = 3 /0 [cos(m + n)x + cos(m — n)x] dx
0

n ifm=n=0,
={%7r ifm=n+#0,
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That is, if we define
wo(x) = (1/7)'/2, Wa(x) = (2/n) % cosnx forn >0,

then {yx}° is an orthonormal set in PC(0, x). Moreover, if the Fourier cosine
coefficients a, of f € PC(0, n) are defined as before,

_2 _ [ 201/m) (£ yg) for n=0,
an——n/Of(x)cosnxdx..{(2/7!)1/2“9%;) for >0,

we have
o0 [o.0)
Jag+> ancosnx =3 (f, wn)¥a(x).
0 0

The reader may verify that the trigonometric form of the Fourier series on [~7, 7]
and the Fourier sine series on [0, 7] are also instances of expansions with respect
to orthonormal sets.

Now, we have been a bit cavalier in this discussion. The reader will recall that
we proved the validity of Fourier expansions only for piecewise smooth functions;
for functions that are merely piecewise continuous there is no guarantee that the
Fourier series will converge at any given point. What this means is that we need
to take a closer look at questions of convergence in the context of the ideas from
vector geometry that we are now using.

EXERCISES
1. Show that {(2/1)1/2 sin(7 — %)(ﬂx/l)}?o is an orthonormal set in PC(0,/).

2. Show that {(2/1’)1/2 cos(n — %)(nx/l)}jo is an orthonormal set in PC(0,/).

3. Show that fy(x) = 1 and fj(x) = x are orthogonal on [-1,1], and find
constants 4 and b so that f;(x) = x? + ax + b is orthogonal to both f; and
fi on [-1,1]. What are the normalizations of fj, fi, and f,?

4. Suppose {¢n} is an orthonormal set in PC(0,/), and let ¢} and ¢; be the
even and odd extensions of ¢, to [—/,]. Show that {2‘”%3} U {2””%;}

is an orthonormal set in PC(~/,/). (Hint: First show that {2”1/ Zq{)f{} and

{2””%;} are orthonormal, and then that (¢35, ¢5,) = 0 for all m, n.)

5. Let {¢n : n > 0} be an orthonormal set in PC(-/,/) such that ¢, is even
when n is even and ¢, is odd when # is odd. Show that {v2 ¢, : n even}
and {v2 ¢, : n odd} are orthonormal sets in PC(0,1).

6. Suppose f € PC(a,b) and f(x) = %[f(xw) +f(x+)] for all x € (a,b).
Show that if f(xg) # 0 for some xq € (a, b), then f(x) # O for all x in some
interval containing xp. (xp may be an endpoint of the interval.)

7. Show that if fe PC(a,b), f >0, and fab S{x)dx =0, then f(x) = 0 except
perhaps at finitely many points. (Hint: By redefining f at its discontinuities,
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72 Chapter 3. Orthogonal Sets of Functions
3.3 Convergence and completeness

If we visualize a k-dimensional vector a as the point in k-space with coordinates
(ay,...,a;) rather than as an arrow, then ||a — bJ| is just t'he distance between jthe
points a and b as defined by Euclidean geometry. Accordingly, the natulral notion
of convergence for vectors is that a, — a if and only if [|a, —al| — 0. This suggests
a new definition of convergence for functions. Namely, if {f»} is a sequence of
functions in PC(a, b), we say that f, — f in norm if || f, — f} — O, that is,

b 2
fo— finnorm < /}fn(x)—f(x)|a’x—+0.

Convergence of f, to f in norm thus means that the difference Ju — f tends to
zero in a suitable averaged sense over the interval [a,b]. It does not guarantee
pointwise convergence, nor does pointwise convergence imply convergence in
norm. For example, let [a, b] = [0, 1]. If we define

falx)=1 for0<x<1/n, fu(x)=0 elsewhere,

then 1 Un
2 _ 2. _ _

Ifall? = /0 ()P dx = /0 dx=1/n,

so f» — 0 in norm, but f4(0) = 1 for all n, so fn does not converge 10 zero
pointwise. On the other hand, if

gn(x)=n forO<x<1l/n, gn(x)=0 elsewhere,

then gn — O pointwise (in fact, gn(0) = 0 for all , and for any x > 0, ga(x) =0
for n > |x|™1), but

1 i/n
lgall2 = ]G lgn(x) P dx = /O ntdx =n,

$0 gn # 0 in norm. However, we have the following simple and useful result.

Theorem 3.2. If fn — f uniformly on [a,b] (~o0 < a < b < o), then fo — f in
norm.

Proof Uniform convergence means that there is a sequence {Mn} of con-
stants such that | f4(x) — f(x)| < My for all x € [a,b] and My — 0. But then

,e‘ b
o= FI2 = / L) - f)Pdx < f M2dx = (b - a)M?,
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It should be mentioned that the norm and inner product are themselves
continuous with respect to convergence in norm,; that is, if f, — f in norm, then

Ifall = 1Al (fa8) = (f,8) and (g, fn)— (g, /) forallg.

The verification is left to the reader (Exercises 1 and 2).

PC(a,b) fails in one crucial respect to be a good infinite-dimensional ana-
logue of Euclidean space, namely, it is not complete. This means, intuitively,
that there are sequences that look like they ought to converge in norm, but which
fail to have a limit in the space PC(q,b). The formal definition is as follows. A
sequence {an}{° of vectors (or functions or numbers) is called a Canchy sequence
if lam — an]] — 0 as m, n — oo, that is, if the terms in the sequence get closer and
closer to each other as one goes further out in the sequence. A space S of vectors
(or functions or numbers) is called complete if every Cauchy sequence in .S has
a limit in S. The real and complex number systems are complete, and it follows
easily that the vector spaces C¥ are complete for any k. The set R of rational
numbers is not: if {r,} is a sequence of rational numbers with an irrational limit,
such as the sequence of decimal approximations to 7, then {r,} is Cauchy but
has no limit in R,

One can see that PC(a, b) is not complete by the following simple example.
Take [a, b] = [0, 1], and st

fux)=x"1Y* forx>1/n,  fu(x)=0 forx<1/n.

If m > n, fm(x) — fa(x) equals x~/4 when m~! < x < n~! and equals 0
otherwise, so

1/n _

1/n
1fon = fal* = / x"V2 dx = 251/ 2n~12 - V2,
1/m t/m

which tends to zero as m, n — oo. Thus the sequence {f,} is Cauchy; but clearly
its limit, either pointwise or in norm, is the function

fxX)=x"Y* forx>0, f(0)=0, (3.18)

and this function does not belong to PC(0, 1) because it becomes unbounded as
x — 0.

It is easy enough to enlarge the space PC(a, b) to include functions such as
(3.18) with one or more infinite singularities in the interval [, b]: One simply
allows improper (but absolutely convergent) integrals in the definition of the inner
product and the norm. But even this is not enough. One can construct Cauchy
sequences {f,} in which f; acquires more and more singularities as n increases,
in such a way that the limit function f is everywhere discontinuous — and in
particular, not Riemann integrable on any interval.

Fortunately, there is a more sophisticated theory of integration, the Lebesgue

intooral whinh allmsre nna tn honmdla sek hislkler fenamilose famatimos Thm T aleaoaon
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theory does require a very weak regularity condition called 'mecfsurabili?y, but
this technicality need not concern us. All functions that arise in practice are
measurable, and all functions mentioned in the remainder of this book are tacitly
assumed to be measurable. For our present purposes, we do not need to know
anything about the construction or detailed properties of the Lebesgue intengal; all
we need is a couple of definitions and a couple of facts that we shall guote without
proof. Rudin [47] and Dym-McKean [19] contain brief expositions pf Lebesgue
integration that include most of the results we shall use; more extensive accounts
of the theory can be found, for example, in Folland [25] and Wheeden-Zygmund
156l We denote by L*(a,b) the space of square-integrable functions on [a, b},
that is, the set of all functions on [a, b] whose squares are absolutely Lebesgue-

integrable over [a, bl
1%(a,b) = {f:/b 1f(x)]2dx<oo}. (3.19)

This space includes all functions for which the (possibly improper) Riemann
integral [ ab |f(x)|*dx converges, and one should think of it simply as the spac.e
of all functions f such that the region between the graph of |f |2 and the x-axis

has finite area. Since )
st< 3(sP+1%)

(because 52 + 12 — 2st = (s — £)? > 0) for any real numbers s and ¢, we have

0@ < $ (172 +1801),

and thus if f and g are in L?(a, b), the integral

b —
(f,g) = / f()g®) dx

is absolutely convergent. Therefore, the definitions of the inner product ax}d norm
extend to the space Lz(a, b), as do all their properties that we have discussed
previously. o

As in the space PC(a,b), there is a slight problem with the po'smvx'ty of
the norm, as the condition [ |f 12 = 0 does not imply that f vanishes-ldentlcall-y
but only that f = 0 “almost everywhere.” The precise interpretanpn of this
phrase is as follows. A subset E of R is said to have measure zero if, for any
€ > 0, E can be covered by a sequence of open intervals whose total length is
less than €, that is, if there exist open intervals Iy, I,... of lengths Li,0b,. .. such
that E c U$°I; and 37°; < €. (For example, any countable set has measure
zero: If E = {x,X3,...}, let I; be the interval of length € /27 centerefi at x;.) A
statement about real numbers that is true for all x except for those x in some set

L3 - SRR R A ]
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It can be shown that if /' € L%(a,b), the norm of f is zero if and only
if f(x) = O for almost every x € [a,b]. Accordingly, we agree to regard two
functions as equal if they are equal almost everywhere. This weakened notion of
equality then validates the statement that || f)| = O only when f = 0, and it turns
out also to be appropriate in many other contexts. Moreover, if two continuous
functions are equal almost everywhere then they are identically equal, so for
continuous functions the ordinary notion of equality is entirely adequate.

The crucial properties of L?(g, b) that we shall need to state without proof
are contained in the following theorem.

Theorem 3.3. (a) L%(a,b) is complete with respect to convergence in norm. (b)
For any f € L*(a,b) there is a sequence f, of continuous functions on [a, b] such
that fn — f in norm. In fact, the functions f, can be taken to be the restrictions
to [a, b] of functions on the line that possess derivatives of all orders at every point;
moreover, the latter functions can be taken to be (b — a)-periodic or to vanish
outside a bounded set.

This theorem says that Lz(a, b) is obtained by “filling in the holes” in the
space PC(a,b). The first assertion says that all the holes have been filled, and
the second one says that nothing extra, beyond the completion of PC(a, b), has
been added in. For a proof, see Rudin [47], Theorems 11.38 and 11.42. We
shall indicate how to prove the second assertion — that is, how to approximate
arbitrary L? functions by smooth ones — in §7.1.

We are now ready to discuss the convergence of expansions with respect
to orthonormal sets in PC(a,b), or more generally in L?(a,b). The first step
is to obtain the general form of Bessel’s inequality, which is a straightforward
generalization of the special case we proved in §2.1.

Bessel’s Inequality. If'{¢»}{° is an orthonormal set in L*(a,b) and f € L*(a, b),
then

SIS e < AR (3.20)
1

Proof: Observe that

(£ S, 8ndn ) = TFGmI s 6m) = 1, fm)

and that by the Pythagorean theorem,

2 N

= SIS én)lP

IS0 6n16
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Hence, for any positive integer NV, by Lemma 3.1,

N 2
f - Z(f: ¢n)¢n
1

0<|

p]

N N
~ 112 - 2Re<f, S ¢n>¢n> + H%:(f, )b
i
al 2 al 2
=12 =25 [ frdm) + 3 1S ¢n)]
1 1

N
=112 =S WS el
1

Letting N — oo, we obtain the desired result.

We are now concerned with the following problem: given an orthonormal
set {¢n}$° in L2(a, b), is it true that

£ =S50 fn)n (3.21)
1

for all f € L%(a,b)? First we assure ourselves that the series on the right actually
makes sense.

Lemma 3.2. If f € L*(a,b) and {¢n} is any orthonormal set in L*(a,b), then the
series S°(f, dn)dn converges in norm, and HE(f s ¢n>¢n“ < A

Proof- Bessel’s inequality guarantees that the series 3 |(f, ¢n)|? converges,
so by the Pythagorean theorem,

n 2 n

Z(fs Sn)oni| = Z W, ¢n)12 — 0 asm,n— oco.

m m

Thus the partial sums of the series >2( f,¢n)dn form a Cauchy sequence, and

since L?(a, b) is complete, the series converges. Finally, another application of
the Pythagorean theorem and Bessel’s inequality gives ~

[Siromsr - A}iﬁf;oﬂﬁjxf,qsnm = ]}iﬁoi\( o

= f: S em)® < AP g
1

Now, an obvious necessary condition for (3.21) to hold for arbijcrary [ is that
the orthonormal set {¢n} is as large as possible, that is, that there is no nonzero
f which is orthogonal to all the ¢a’s. (If {f, ¢n) = O for all n, then (3.21) 1m§hes
that f = 0.) Moreover, if (3.21) holds and the Pythagorean theorem extends to

infinite sums of orthogonal vectors, Bessel’s inequality (3.20) should actually be
4. TATLL 4L e shnsanbta fn mind we arvrive at the main theorem.
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Theorem 3.4. Let {¢n}5° be an orthonormal set in L*(a,b). The following condi-
tions are equivalent:
fa) If {f,¢n) =0 for all n, then f =0.
(b) For every f € L*(a,b) we have f = 3-°(f, dn)dn, Where the series converges
in norm. .
(c) For every f € L*(a,b), we have Parseval’s equation:

117 = ST ém). (3.22)
1

Proof:  We shall show that (a) implies (b), that (b) implies (c), and that (c)
implies (a).

(a) implies (b): Given f € L*(a, b), the series 3(f, ¢»)$n converges in norm,
by Lemma 3.2. We can see that its sum is f by showing that the difference

g =f~3{f,n)n is zero. But
(& &m) = (f, bm) - Z(f, Pn){(Pns bm) = ([, dm) — (f,bm) =0
n=1

for all m. Hence, if (a) holds, g = 0.
(b) implies (c): If f = 3(f, #n)dn, then by the Pythagorean theorem,

N
1712 = Jim 50U, én)én
1

2 N s
= Hm S Kol =31 én)
1 1

(c) implies (a): If (c) holds and (f, ¢») = O for all n then ||f]| = 0, and
therefore f = 0. |

An orthonormal set that possesses the properties (a)~(c) of Theorem 3.4 is
called a complete orthonormal set or an orthonermal basis for (g, b). This usage
of the word complete is different from the one discussed earlier in this section,
but it is obviously appropriate in the present context. If {¢,} is an orthonormal
basis of L*(a, b) and f € L*(a, b), the numbers (f, ¢») are called the (generalized)
Fourier coefficients of f with respect to {¢»}, and the series 3 (f, #n)¢n is called
the (generalized) Fourier series of f.

Often it is more convenient not to require the elements of a basis to be
unit vectors. Accordingly, suppose {¥»} is an orthogonal set (and recall that,
according to our definition of orthogonal set, this entails y, # 0 for all n). Let
&n = ||Wnll " yn; then {¢n} is an orthonormal set. We say that {w,} is a complete
orthogonal set or an orthegonal basis if {¢,} is an orthonormal basis. In this case
the expansion formula for f € L?(a, b) and the Parseval equation take the form

2
=3 %;—’,;%'-’22% A2 =3 %’;—%L (3.23)

Now, what about the orthonormal sets derived from Fourier series that we
discussed in §3.27 We have not yet proved that they are complete, for we derived

the expansion formula f = 3(f, ¢n)¢n only when f was piecewise smooth, not
for an arhitrary £ 2 T2(a b)Y BRnt there ie actnally verv Hittla werl 1aft 4 A
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Theorem 3.5. The sets

i} ©° d 0 u {si e
in cosnx } {sm nx }
{e }n=-oo an { n=0 n=1

are orthogonal bases for L*(—n, n). The sets

o0 . o0
{cos nx} and {sm nx}
n=0 n=1

are orthogonal bases for L*(0, ).

Proof: First consider the functions wa(x) = . Suppose f € L*(~m,7)
and ¢ is a (small) positive number; we wish to show that the N th partla_l sum of the
Fourier series of f approximates f in norm to within € if N 1s.suﬁiglently lar‘ge.
By part (b) of Theorem 3.3, we can find a 2z-periodic function f, possessing
derivatives of all orders, such that ||f — f]| < €/3. Let ¢p = (27)" S, wn) and
Cn = (27t)”1(f, wn) be the Fourier coefficients of f and f. .By Theorem 2.5 of
§2.3, we know that the Fourier series S Cnin converges uniformly t_o [ hence,
by Theorem 3.2, it converges to f in norm. Thus, if we take N sufficiently large,

we have ¥
Hf ~ 3 Cnpm
-N

Moreover, by the Pythagorean theorem and Bessel’s inequality,

<&
3

2 N ,
< [en —cal
N

N N
HZEM ~ > Cn¥n
—N —N
<Y E-al<If-12<(3)
Thus, if we write
N o _ N N N
f——ZCan = (f— f) + (f—' ZEnl//n) + (ZCn'l/n - ZC'an)
-N -N ~N -N
and use the triangle inequality, we see that

”f“‘i(fn‘//n

€ € € _
<§+§+§~—€-

This proves the completeness of the set {¥n} = {¢"*} in L*(-m, =), and the
completeness of {cos nx}U{sin nx} is essentially a restatement of the same result.
The completeness of {cos nx} and {sinnx} in L2(0, ) is an easy corollary. (Just

A al e mmn o AA ambimonioon £~ T2O ) ta T w1 B
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The normalizing constants for the functions in Theorem 3.5 are, of course,
V1]2n for e"*, . /T]7 for cosnx and sinznx on [—n, %] (except for n = 0), and
/2] for cosnx and sinnx on [0, 7] (except for n = 0). With this in mind, one
easily sees that the Parseval equation takes the form

V4 (=] ' O
/ foPdx=2n3" lenl = Flaol? + 23" (1aal2+ 1bal2), £ € L(-a,m),
- oo 1
where an, by, and ¢, are the Fourier coefficients of f as defined in §2.1, and
¥4 o0 o0
| V@rdr=Fal+ 33 mlP =23 b fe 0.,
1 i

where a, and b, are the Fourier cosine and sine coefficients of f as defined in
§2.4. For example, if we consider the Fourier sine series of f(x) = x on [0, 7] as
derived in §2.1, we find that

T 4 T, n3 1 72
P [ =T o 2w =%

a result which we derived by other means in Exercise 3, §2.3.
Let us sum up our theorems about the convergence of Fourier series. If f is

a periodic function, then the Fourier series of f converges to f

(i) absolutely, uniformly, and in norm, if f is continuous and piecewise smooth;
(ii) pointwise and in norm, if f is piecewise smooth;
(ili) in norm, if f € L*(a, b).
These results are sufficient for virtually all practical purposes. However, as we
indicated in §2.6, there is more to be said on the subject. Here we shall just
mention one more result that is a natural generalization of the theorems in this
section. If 1 < p < oo, we define L7(a, b) to be the space of Lebesgue-integrable
functions f on [a, b] such that

/b P dx < oo.

If p > 1, the Fourier series of any f € L?(~x, ) converges to f in the “L? norm,”
that is, if {cn} are the Fourier coefficients of f,

r

However, this result is false for p =.1.

N r
> cne™ - f(x)’ dx -0 as N — co.
N

EXERCISES
1. Show that if fy € L%(a,b) and f, — f in norm, then (fy, g) — (f, g) for all
g € L*(a,b). (Hint: Apply the Cauchy-Schwarz inequality to (f; — f, g).)
2. Show that ' I -l ' < ||f - gll. (Use the triangle inequality; consider the
cases || f]| > |||l and || f]| < |lg|| separately.) Deduce that if f, — f in norm
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3. Show directly that any f € PC(a,b) is the limit in norm of a sequence of_
continuous functions on [, b], by the argument suggested by the following
picture.

= lim

4. Suppose {¢»} is an orthonormal basis for Lz(a, b).. Suppose ¢ > 0 and d e R,
and let wn(x) = c/?¢n(cx +d). Show that {yn} is an orthonormal basis for
13(e54, 5=2),

5. Finish the proof of Theorem 3.5. That is, from the Cf)mpleteness of {e
on [-7,n], deduce the completeness of {cos nx} U {sinnx} on [-=n,n] and
the completeness of {cosnx} and {sinnx} on [0, 7]. -

6. Let ¢n(x) = (2/1)/*sin(n ~ §)(nx/I). In Exercise L,§3.2, it was shown that
{#»}$° is an orthonormal set in L?(0,1). Prove that it is actually a basis, via
the following argument. '

a. Let y(x) = [7Y2sin(knx/2{). Show that {¥;}7° is an orthpnormal
basis for L*(0,2[). (This follows from Theorem 3.5 anc.i Exercise 4.)-

b. If f € L*(0,1), extend f to [0, 2/] by making it symmetric about the line
x = [, that is, define the extension f by f(x) = f(2l - x) = f{x) for
x €[0,11. Show that (7, yy,) = 0 and (f, ys—1) = 214/, én)-

¢. Conclude that if {f, ¢n) = 0 for a{l}) n, then f=0. )

7. Show that {(2/1)1/2 cos(n — %)(mc/l)}1 is an orthonormal basis for L*(0,[).
(The argument is similar to that in Exercise 6, but t~his time you ghould
extend f to be skew-symmetric about x =/, that is, f(2/ - x) = - flx) =
—f(x) for x € [0,11.) ‘

8. Flj:x(d 3che expan[siox}ls of the functions f(x) = 1 and g(x) = x on [0,/] with
respect to the orthonormal bases in Exercises 6 and 7.

9. Suppose {¢»} is an orthonormal basis for L?*(a,b). Show that for any f, g €

L*(a,b),
<f9 g) = Z(f) ¢ﬂ><g3 ¢7l>

(Note that the case f = g is Parseval’s equation.) _ ’
10. Evaluate the following series by applying Parseval’s equation to certain of
the Fourier expansions in Table 1 of §2.1.

inx}

o0 nz

> 1 ~_ 1 L
. 2o b 21:(272—1)6 « ;(n2+1)2

1
oo 2
A SN e
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11. Suppose f is of class CV), 2n-periodic, and real-valued. Show that /s
orthogonal to f in Lz(—n,n) in two ways: (a) by expanding f in a Fourier
series and using Exercise 9 and (b) directly from the fact that 2f ' = (f2).

3.4 More about 1.2 spﬁces; the dominated convergence theorem

In this section we continue the general discussion of L? spaces and introduce
an extremely useful criterion for the integral of a limit to equal the limit of the
integrals,

Other types of L? spaces

The results of the previous section concerning L?(a,b) can be generalized in
various ways, and we shall need some of these generalizations later on.

First, one can replace the element dx of linear measure on [g,b] by a
weighted element of measure, w(x)dx. To be precise, suppose w is a continuous
function on [, b] such that w(x) > O for all x € [, b]; we call such a w a weight
function on [a, b]. We can then define the “weighted L? space” L2 (a, b) to be the
set of all (Lebesgue measurable) functions on [a, b] such that

b
/a /() 2w (x) dix < oo,

and we define an inner product and norm on L3 (a, b) by

b L b 1/2
f, g)w = f Fx)E@w(x) dx, nfnw=( / zf<x>12w<x>dx) |

This inner product and norm still satisfy the fundamental conditions (3.3)-(3.6),
so the theorems of §3.1 apply in this situation. So do Theorems 3.2, 3.3, and 3.4.
w could also be allowed to have some singularities, as long as [ ab w{x)dx < oo,
or to vanish at a few points. (If w vanishes on a whole subinterval of [g, ], one
loses the strict positivity of the norm.)

Second, one can replace the bounded interval [a, b] with a half-line or the
whole line, or by a region in the plane or in a higher-dimensional space. That is,
let D be a region in R¥. (A “region” can be anything reasonable: an open set, or
the closure of an open set, or indeed any Lebesgue measurable set. It does not
have to be bounded, and indeed may be the whole space.) We define L?*(D) to
be the set of all functions f such that

[ 1rePax <o,
D
and we define the inner product and norm on L?(D) by

1/2
{(f o\ = f fixVols)dx Ul o / f lnv\ﬂ,iv\
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Here [, is a k-tuple integral, and dx is the element of Euclidean measure in
k-space (length when k = 1, area when k = 2, volume when k = 3, etc.). If one
is working only with Riemann integrals, one has to worry a bit about improper
integrals when D is unbounded, but this problem is not serious. (The Lebesgue
theory handles integrals over unbounded regions rather more smoothly.) Again,
this inner product and norm satisfy (3.3)-(3.6), so the results of §3.1 are available,
as is Theorem 3.4. However, the analogue of Theorem 3.2 is false when D is
unbounded (or more precisely, when D has infinite measure), and a glance at its
proof should show why. (See Exercise 6.) We shall state a result shortly that can

be used in its place.
Theorem 3.3 also needs to be reformulated; here is one good version of it.

Theorem 3.6. L2(D) is complete. If f € L*(D), there is a sequence {fn} that
converges to f in norm, such that each fy is continuous on D and vanishes outside
some bounded set. The f,’s can be taken to be restrictions to D of functions defined
on all of R¥ that have derivatives of all orders and vanish outside bounded sets.

One can also modify L?(D) by throwing in a weight function, as before.
As a matter of fact, all one needs to develop the ideas of §3.1 are the following
ingredients:

(i) a vector space /#, that is, a collection of objects that can be added to each
other and multiplied by complex numbers, such that the usual laws of vector
addition and scalar multiplication hold;

(i) an inner product (4, v) on # and associated norm [jul| = (1, %) 1/2 that satisfy
(3.3)~(3.6).
If, in addition, the space Z is complete with respect to convergence in norm, it
is called a Hilbert space. In this case, Bessel’s inequality and Theorem 3.4 also
hold. This general setup includes, but is not limited to, the spaces Cck, L*a,b),
L2%(a,b), and L?(D) discussed above.
Another example of a Hilbert space is the space 2 of square-summable se-
quences. That is, the elements of 12 are sequences {c»}{° of complex numbers
such that 3_5° lcn|?* < oo, and the inner product and norm are defined by

oo 00 1/2
({en}. (dn}) =3 cndn, ‘1]{cn}|]=(zlcn12) :
1 1

We have encountered this space before without mentioning it explicitly. Indeed,
suppose {$}5° is an orthonormal basis for L%(a,b). Then the mapping that

takes an f € L*(a, b) to its sequence of coefficients {( £ qbn)} sets up a one-to one

correspondence between L?(a, b) and [ 2 that is linear and (by Parseval’s equation)
norm-preserving. Such a mapping is called a unitary operator.

One further comment: We suggested thinking of functions f € L?*(a,b) as
vectors whose components are the values f(x),.x € [a, b]. The reader who knows
about orders of infinity may be puzzled that there are uncountably many such
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s.ets‘. T.he explanation is that the elements of Lz(a, b) are continuous functions or
limits in norm of continuous functions, and the values of a continuous function
are not completely independent of each other. For example, if f is continuous
on [a, b}, then f is completely determined by its values at the rational points in
[a, b], of which there are only countably many.

The dominated convergence theorem

We now st.ate one other result from the Lebesgue theory of infegration that is
of great utility even in the setting of Riemann integrable functions. It gives a
gene;al copdition under which the integral of a limit is the limit of the integrals
and is an improvement on most of the theorems of this sort that one commmﬂ}i

le;mf:(l):mters in calculus texts. We shall use it frequently throughout the rest of this
ook,

The Dominated Convergence Theorem. Let D be a region in R* k=1,2,3,...)
Suppose gn (n=1,2,3,...), g and ¢ are functions on D, such that

(a) $(x) > 0 and [, $(x) dx < oo,

() \gn(x)| < ¢(x) for all n and all x € D,

(c) gn(x) — g(x) as n — oo for all x € D.
Then [, gn(x)dx — [, g(x) dx.

The proof of this theorem is beyond the scope of this book (see Rudin [47],
Follal.ld [25], or Wheeden-Zygmund [56]), but the intuition behind it can be easily
explained. If g, — g pointwise, how can the relation | b &n — [p g fail? Consider
the following two examples, in which D is the real line:

Mx)=1 forn<x<n+1, fo{x)=0 otherwise.
gn(x)=n forO<x<1/nm, gn(x) =0 otherwise.

We have
o0 o0
/;oofn(x)dx:/ gn(x)dx =1 forall n,

but hn:.tn_.,co Ja(x) = limp—soo gn(x) = O for all x. The trouble is that as n — oo,
the region under the graph of f, moves out to infinity to the right, and the region
under the graph of g; moves out to infinity upwards, so in the limit there is
nothing left. (See Figure 3.3.)

Now, the dominated convergence theorem essentially says that if this sort
Pf bad behavior is eliminated, then the integral of the limit is the limit of the
integrals. ny?cthesis (a) says that the region under the graph of ¢ has finite area,
and hypothesis (b) says that the graphs of |g,| are trapped inside this region, so
they cannot leak out to infinity. ’

As a corollary, we obtain the following relation between pointwise conver-

BOENCS GNA PATIVETGATAG 17 B APAS
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.fn In

Ficure 3.3. The examples f, and g of sequences for which the integral of
the limit is not the limit of the integral. The arrows indicate what happens
as n increases.

Theorem 3.7. Suppose fn € L*(D) for all n and fu — f pointwise. If there exis.ts
w € L2(D) such that |fu(x)| < \w(x)| for all n and all x € D, then fo— fin
norm.

Proof We have | f(%)| = lim|fz(x)| < |y (x)|, and hence
) - FOOF < (1701 +17001)” < WP

: 2
Therefore, we can apply the dominated convergence theoren, with gn = | fu—f1%
g =0, and ¢ = |2y|%, to conclude that

o~ fIP = L () = F®)F dx — 0. ‘

Best approximations in L?

If {¢n} is an orthonormal basis for L?(D), where D is any interval in R or region
in B”, we have S3(f,¢n)gn = f forall f € L?*(D). On the other hanéi, suppose
{¢n} is an orthonormal set in L*(D) that is not complete. If f € L (D), what
significance can we attach to the series 3 ( [y bn)n? .V\./’e know 'that it converges
by Lemma 3.2. In general its sum will not be f, but it is the unique best approx-
imation to f in norm among all functions of the form 3 ca¢n. (The latter sum
converges in norm precisely when 37 ]cnlz < oo, as the argument used to prove
Lemma 3.2 shows.) We state this result as a theorem.

Theorem 3.8. If {¢x} is an orthonormal set in L*(D) and f € L*(D), then

EDIRALS

< ”f — > cnén

for all choices of cn with ¥ |eal? < co. Equality holds only when cn = (f, én) for
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Proof: We have

S = entn = (£ = oA 8n1én ) + (1 60) = cn) .
Now, f ~ 57(f, #n)én is easily seen to be orthogonal to all ¢,; see the first part

of the proof of Theorem 3.4. Hence, by the Pythagorean theorem (and a simple
limiting argument, if there are infinitely many ¢),

7= ent g Hf— S b

The last sum on the right is clearly nonnegative, and it is zero precisely when
cn = {f, ¢n) for all n; this establishes the theorem. g

2 2
+ 30 n) = cn

FiGUrE 3.4. A vector f and its orthogonal projection onto a plane.

The pictorial intuition behind Theorem 3.8 is shown in Figure 3.4. The
horizontal plane represents the space of functions (or vectors) of the form 3~ cn¢p;

the sum 3 (f, ¢n)dn is the closest point to f in this plane, namely, the orthogonal
projection of f onto the plane.

One situation in which Theorem 3.8 is particularly useful is when {¢,} is
simply a finite subset of an orthonormal basis.

Corollary 3.1. Suppose {$x}$° is an orthonormal basis for L*(D). If f € L*(D),

the partial sum Z{V (f, On)dn of the series -S°(f, dn)dn is the best approximation
in norm to f among all linear combinations of ¢, ..., dx.

EXERCISES

1. Show that {ez"i("’x*”y >} is an orthonormal set in L?(D) where D is
M =00

any square whose sides have length one and are parallel to the coordinate
axes.
2. Find constants a,b, 4, B, C such that fy(x) = 1, fi(x) = ax+b, and fo(x) =

Ax*+ Bx +C are an orthonormal set in L% (0, 00) where w(x) = e™*. (Hint:
[P x"e~*dx = nl)

[o.n)
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3. Let D be the unit disc {x*+y? < 1}, and let f,(x, y) = (x +iy)". Show that
{/2}§° is an orthogonal set in L2(D), and compute || fy| for all n. (Hint: In
polar coordinates, x + iy = re'® and dxdy = rdr d6.)

4. Suppose {¢n} is an orthonormal set in LZ (D). Show that {w!/2¢,} is an
orthonormal set in L2(D) (with respect to the weight function 1).

5. Suppose f:[a,b] — [c,d] and f'(x) > O for x € [a, b]. Show that if {¢,} is
an orthonormal basis for L?(c,d), then {¢n o f} is an orthonormal basis for
L2(a, b) where w = f.

6. Find an example of a sequence {f,} in L?(0, o) such that f, — 0 uniformly
but f» 4 0 in norm.

7. What is the best approximation in norm to the function f(x) = x on the
interval [0, 7] among all functions of the form (a) ag + @, cos x + a, cos 2x,
(b) by sinx + by sin2x, (¢) acosx + bsinx?

3.5 Regular Sturm-Liouville problems

In §1.3 we arrived at the orthogonal bases {cos nx}§° and {sin nx}$° for L2(0, 7)
by solving the boundary value problems

W)+ ux) =0, W0 =u(r)=0

and
w'(x)+ APu(x)=0,  u(0)=u(xn)=0.

We derived the orthogonal basis {¢*}%°, for L?(~n, ) by considering periodic
functions, but we could also have found it by solving the boundary value problem

W)+ Pu(x) =0, u(-n)=ux), u(-n)=1u(n).

In fact, there is a large class of boundary value problems on an interval [a, 5]
that lead to orthogonal bases for L?(a, b). These problems are the subject of the
present section.
First, a bit of conceptual background from finite-dimensional linear algebra.
We recall that a linear transformation 7' : C¥ — CF is called self-adjoint or
Hermitian if
(Ta,b) = (a,Th) for all a,b e CF.

(When T is described by a matrix (7;;), this means that T}; = T;;.) It is one of
the basic results of linear algebra, known as the spectral theorem or the principal
axis theorem, that whenever T is self-adjoint there is an orthonormal basis of C*
consisting of eigenvectors for 7. What we are aiming for is an analogue of this
theorem for differential operators acting on the space Lz(a, b).

Suppose then that § and T are linear operators that are defined on certain
subspaces Zg and Py of L*(a,b) and map them into L2(q,b). We say that S
and T are adjoint to each other (or that T is the adjoint of S, or vice versa) if

(S(N.g)=(f.T(g) forall e Dcand g€ Dr.
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S is called self-adjoint or Hermitian if

(5(f), 8 = (f,S(g)) forall f,geZs.

(These definitions will suffice for our purposes; in more advanced work one needs
to be more careful about specifying the domains &y and Dr.)
Now suppose L is a second-order linear differential operator,

Lfy=rf"+af +pf,

where r, ¢, and p are real functions of class C® on [a, b]. We shall assume that
the leading coefficient 7 is nonvanishing on [a, b], as the existence of “singular
points” where r = 0 complicates the theory considerably. (Later we shall some-
times allow r to vanish at one or both endpoints.) For the time being, we take
the domain of L to be the space of all twice continuously differentiable functions
on [a, bl.

What is the adjoint of L? If we write out the integral defining (L(f), g), we
can move the derivatives from f onto g by integration by parts, thus:

[orgas=- [ rugraxvorsl = [ rewrax+ [z - soe],
/;b(qf’)?dx = - /ab fla®)dx + qf?]:-
We therefore have
L8 = [ 05"+ af +pFax
= [ fle® -~ @@ +p7lax + [r7 - s0m) +asz], 329
= (L' @)+ [r(F'E~ 12) +(a~1)1g].
where L* is the formal adjoint of L defined by
L*(g)=(rg)" —(a8) +pg=rg" +(2r' - q)g' + (" —d' +p)g.  (3.25)
(Here we have used the assumption that r, g, and p are real.) We say that L is
formally self-adjoint if L* = L. On comparing the coefficients of L* with L, we

see that this happens precisely when 2/ — g = g and '’ — ¢’ = 0, that is, when
g = r'. In this case, L has the form

LNy =rf"+7f +pf=(f) +pf, (3.26)

and moreover, the second boundary term at the end of (3.24) vanishes. We have

therafnre nraved the fallanwing
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Lagrange’s Indentity. If L is formally selfFadjoint,
’ (3.27)
a

(L. g) = L&) + 1T~ 2] -

Evidently the discrepancy between formal and actual self—gdjointness lies in
the endpoint terms in (3.27). They can be eliminated by restricting L t'o a smaller
domain, consisting of functions that satisfy suitable bcundary condl’glons. More
precisely, for a second-order operator L it is usually appropriate to impose two
independent boundary conditions of the form

Bi(/) = a1 f(@) + e f'(@) + Buf (B) + B (0) =0, 3.28)
By(f) = aaf(a) + a3 f'(a) + Bof(b) + B2 (B) = 0,
where the o’s and f’s are constants. We say that the boundary conditions (3.28)
are self-adjoint (relative to the operator L) if
[z - f-g-')]b ~0 forall f,g satisfying (3.28).
a
Almost all the boundary conditions that arise in practice are of the form
af(@)+d flla)=0, BfB)+A f(b)=0
(o, BB €R (o) # (0,00 (B.5)#(0,0)).
Boundary conditions of the form (3.29) are called separated, since eac‘h' one in-
volves a condition at only one endpoint. Separated bqundary conditions are
always self-adjoint (relative to any operator L). In fact, if f and g both satisfy
the boundary condition at 4,
af(a)+d f@)=0, agla)+dg'(@)=0, (3.30)

then the expression 7(f'Z — fZ') vanishes at x = g; likewise at b. This is obvious
when o = 0, in which case (3.30) becomes f(a) = g(a) = 0; on the other hand,
if o # 0, we can rewrite (3.30) as

fll@=cf@), gay=cgla) (c=-afd)

(3.29)

50 that
r(a)lf (@)2(@) - f(@)g (@) = cr(a)[f(a)g(a) - f(a)g(a)] = 0.

There is also one set of nonseparated boundary conditions that is commonly
used, namely, the periodic boundary conditions

fl@y=f®), fla)=1b). (3.31)

These are self-adjoint relative to L provided that r(a) = r(b), for then the end-
point evaluations at a and b in (3.27) cancel each other out.

Now we are ready to formulate the boundary value problems that lead 1o
et mmmonnl hnnna Fae T204 M
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Definition. A regular Sturm-Liouville problem on the interval [a, b] is specified by
the following data:
(i) a formally self-adjoint differential operator L defined by L(f) = (rf") +pf,

where r, r', and p are real and continuous on [a, b] and r > 0 on [a, b];

(ii) a set of self-adjoint boundary conditions, B;(f) = 0 and B,(f) = 0, for the
operator L;

(iii) a positive, continuous function w on [a, b].

The object is to find all solutions f of the boundary value problem

L) +mwf=0, ie, [rG0)f ()] +p(x0)f(x) + iw(x)f(x) = 0,
B\(f)=Ba(f) =0,

where A is an arbitrary constant.

(3.32)

(A comment on condition (i): We have assumed from the outset that » does
not vanish on [a, b}, so either r > 0 or r < 0. If r < 0, we simply replace r, p,
and A by —r, -p, and —A, which leaves (3.32) unchanged.)

For most values of 4, the only solution of (3.32) is the trivial one, f(x) = 0.
If (3.32) has nontrivial solutions, A is called an eigenvalue for the Sturm-Liouville
problem, and the corresponding nontrivial solutions are called eigenfunctions.
(This usage of the term eigenvalue is somewhat specialized. A is an eigenvalue
in the usual sense of the word, not of the operator L but rather of the operator
M defined by M(f) = ~w™'L(f).) If f and g satisfy (3.32), then so does any
linear combination ¢;f + c,g (this is just the superposition principle at work),
so the set of all eigenfunctions for a given eigenvalue 1, together with the zero
function, is a linear space called the eigenspace for A.

We summarize the elementary properties of eigenvalues and eigenfunctions
in the following theorem, which displays the importance of eigenfunctions from
the point of view of orthogonal sets. We recall that if w > 0 is a weight function
on [a, b], the weighted inner product (f, g)w is given by

b ——
ugm=qumumuux=mﬂm=Mwm. (3.33)

Theorem 3.9. Let a regular Sturm-Liouville problem (3.32) be given.

(a) All eigenvalues are real.

(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with re-
spect to the weight function w; that is, if f and g are eigenfunctions with
eigenvalues A and p, A # u, then

b
<ﬂmw=qumumumx=a

(c) The eigenspace for any eigenvalue A is at most 2-dimensional. If the boundary

rnnAditinme aun cnnmantad i¢ da sdinmein 1 diena meand el
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Proof (a) If Ais an eigenvalue, with eigenfunction f, then
MSIE = G, f) = —(L, ) = —(fLLO) = (Lawf) =X f,wf) = A%

Here we have used (3.27) and (3.33) and the fact that f satisfies self-adjoint
boundary conditions. Since ||f]|% > 0, we conclude that 4 = A, that is, A is real.

(b) Suppose L(f) + Awf = 0 and L(g) + pwg = 0, where f and g are
nonzero. We have just shown that A and z must be real, and by the same sort of
argument,

M, 8w = (Awf, 8) = —(L(f), &) = —{f, L(g)) = {f, pwg) = u{f, &hw.

Thus, if 4 # p we must have (f, g)w = 0.

(c) The fundamental existence theorem for ordinary differential equations
(see Appendix 5) says that for any constants ¢ and ¢, there is a unique solution
of L(f) + Awf = O satisfying the initial conditions f(a) = 1, f'(a) = ¢;. That
is, a solution is specified by two arbitrary constants ¢; and ¢, s0 the space of
all solutions of L(f) + Awf = 0 is 2-dimensional. Hence the space of solutions
satisfying the given boundary conditions is at most 2-dimensional. Moreover,
if the boundary conditions are separated, one of them has the form o f(a) +
o f!(a) = 0. This imposes the linear relation ac; + o'c; = 0 on the constants ¢
and ¢, and hence reduces the dimension of the solution space to one. (Of course
the other boundary condition will usually reduce the dimension to zero; this is
why there are nontrivial solutions only for certain special values of A.) ]

At this point it is not evident that a given Sturm-Liouville problem has any
eigenfunctions at all. But, in fact, there are as many as anyone could wish for.

Theorem 3.10. For every regular Sturm-Liouville problem
(rfY +pf+iwf=0, Bi(f)=B(f)=0

on [a, b, there is an orthonormal basis {¢n}{° of L%(a,b) consisting of eigenfunc-
tions. If An is the eigenvalue for ¢n, then limp—oo An = -+co. Moreover, if fisof
class C® on [a, b] and satisfies the boundary conditions By(f) = By(f) =0, then
the series S{f, ¢n)dn converges uniformly to f.

In more detail, the content of Theorem 3.10 is as follows. By Theorem 3.9(c),
for each eigenvalue A there are either one or two independent eigenfunctions. In
the latter case we can choose the two eigenfunctions to be orthogonal to each other
with respect to the weight w. (If (f;, fo)w # 0, we can replace f by fr = fa—chi
where ¢ is chosen to make (fi, f,) = 0.) If we put all these eigenfunctions
together, by Theorem 3.9(b) we obtain an orthogonal set; and Theorem 3.10
says that this set is actually a basis. This implies, in particular, that the set of
eigenvalues is countably infinite.

We shall take Theorem 3:10 on faith for the present, but we shall prove it in
the case of separated boundary conditions in §10.3. A proof of the general case,
as well as its generalization to higher-order differential equations, can be found
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Example. Consider the problem

["+af =0, f0)=af(0), f()=BS{) (3.34)

First let us dispose of the case 4 = 0. The general solution of /" = 01is f(x) =
c + €2 The boundary condition at 0 says that ¢; = acy, and the boundary
_condmon at [ says that ¢; = f(c;+c,/). The only solution of this pair of equations
18 ¢; = ¢y = O unless § = a/(1+Ia), in which case we may take ¢; = 1 and ¢; = a.

Now for 4 # 0, let us set A = v2, where v is positive real or positive imaginary
according as 4 > 0 or 4 < 0. (By Theorem 3.9(a), we need only consider real 1.)
The general solution of the differential equation f” +Af =0 is

f(x)=cjcosvx + ¢z sinvx (A= 1/2).

Since f(0) = and f'(0) = ve,, the boundary condition at O says that ¢; =
(a/v)e;. Since a constant multiple of a solution is a solution, we may choose
¢y =V, ¢ = a, 50 that

f(x)=vcosvx + asinvx. (3.35)
Now the boundary condition at / says that

~v2sinv + av cosvl = B(v cosvl + asin vl),

or
(o= B)weosvl = (af +v¥)sinvl,
or finally
_ (=B
tanul = m. (3.36)

For.the case of imaginary v (i.e., A < 0) we set v = iy and use the fact that
tan ix = {tanhx to rewrite {3.36) as

tanh i = (2= Bl (3.37)

af —p?
In both cases we need only consider positive values of v and u, since the actual
eigenvalue is »2 or —pu?.

If v satisfies (3.36), then the function f defined by (3.35) is an eigenfunction
for ‘the probl.ern (3.34). In general it is not normalized, but finding the normal-
1zat.1on is a simple matter of calculus, and the equation (3.36) can often be used
to simplify the result. As an illustration, let us work out the case f = —a. (Other
cases are considered in Exercises 5 and 6.) If f is given by (3.35), then

2

I
2 . .
A2 = /0 (v* cos? vx + 2av sinvx cosvx + o sin? vx) dx

— 11,2 -1 : : - !
= [71/ (x +v lcosvxsinyx) + asin®vx + %az(x —~ v~ cosvxsin VX)}
0

1.2 0 _2v1 (VZ___aZ) _____ il 1. 2
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But if B = —a, (3.36) gives

(wr*-a?) o _ acosvl
2v tanwvl  sinvl’
O
117 = (? + a®)l + afcos? vl +sin* v]) = $ (% + o)l + . (3.38)

There is no way to describe the values of v and y that solve the transcendental
equations (3.36) and (3.37) in closed form (except when o = ), but it is easy to
find them graphically. Namely, they are the values at which the curves y = tanwvl
and y = (a-B)v/(af+v?)in the vy-plane, ory = tanh u/ and y = (a—B)u/(af -
4?) in the uy-plane, intersect. The relative configuration of these curves depends
on o and B; we shall display a couple of representative cases here and let the
reader work out some others as exercises.

Casel o= 1, B = -1, = n. Here the situation is as depicted in Figure 3.5.
There is an infinite sequence of positive solutions to (3.36), say vy < vy < -+,
and v, is approximately n — 1 when n is large. There are no positive solutions
to (3.37). Hence, there is an infinite sequence of positive eigenvalues An = v}
for (3.34), with 4, = (1 — 1)? for n large, and no negative eigenvalues. (Zero is
not an eigenvalue since —1 # 1/(1 +z).) The (unnormalized) eigenfunctions are
given by (3.35):

Jfa(X) = vn cOSURX + sinvaX.

“na
‘‘‘‘‘‘

.........

FIGURE 3.5. Left: the graphs of tanzv (solid) and 2v/ (v? - 1) (dashed);
the numbers v, are the values of v at which the graphs intersect. Right: the

graphs of tanh 7y (solid) and 24/ (42 + 1) (dashed).

Case II. a = 1, B = 4, | = m. Here the situation is as depicted in Figure
3.6. Again there is an infinite sequence {¥,}{° of positive solutions to (3.36),
this time with v» ~ n for large n; and zero is not an eigenvalue of (3.34) since
4 # 1/(1 + r). But now there is also one positive solution g to (3.37). Hence,
there is an infinite sequence of positive eigenvalues Ap = v? for (3.34) and one
negative eigenvalue Ag = — ,u%. The (unnormalized) eigenfunction for A, = vZ is
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FI.GURE 3.6. Left: the graphs of tanzv (solid) and —3v/(v? + 4) (dashed).
Right: the graphs of tanh nu (solid) and 3u/(u® - 4) (dashed). The numbers
vn and ug are the values of v and u at which the graphs intersect.

and the eigenfunction for dg = —u3 is

Jo(x) = ug cosh ugx + sinh ugx.

EXERCISES

1. Under what condition on the constants ¢ and ¢’ are the boundary conditions
S(b) = cfla)and f'(b) = ¢’ f'(a) self-adjoint for the operator L(f) = (rf')/+
pf on [a,b]? (Assume as usual that r and p are real.)

2. Show that the problem (3.34) has no negative eigenvalues if o > 0 > f and
exactly one negative eigenvalue if > a>0o0r 0> f > a.

3. Find the eigenvalues and normalized eigenfunctions for the problem f” +
Af =0, f(0)=0, f'{l) = 0 on [0,/]. (Cf. Exercise 6, §3.3.)

4. Find the eigenvalues and normalized eigenfunctions for the problem f” +
Af=0, f/(0)=0, f({)=0on {0,/]. (Cf. Exercise 7, §3.3.)

5. Find the normalized eigenfunctions for the problem (3.34) in the case o = 0.
(The answer is a bit different in the cases # > 0, # =0, and g < 0.)

6. Find the normalized eigenfunctions for the problem (3.34) in the case 8 = 0.
gint: The change of variable x — [ — x essentially reduces this to Exercise

7. Find the eigenvalues and normalized eigenfunctions for the problem f” +
Af =0, f(0)=0, f/(1) = = f(1).

8. The Sturm-Liouville theory can be generalized to higher-order equations. As
an example, consider the operator L(f) = f* on the interval [0, /].

a. Prove the analogue of Lagrange’s identity for L:

[ e - ooz n]ax = [2 - 78"+ 57 - 17 0

0

b. For the -f.o.urth-.order equation L(f) — Af = 0 one needs four bound-
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conditions is called self-adjoint for L if the right side of () vani'shes
whenever f and g both satisfy the conditions. Show that one obtam§ a
self-adjoint set of boundary conditions by imposing any of the following
pairs of conditions at x = 0 and any one of them at x = [

f= fl - O, f= fh' — O, f/ — fh'l — O, J('II - fl/»' - 0

¢. Show that the eigenvalues for the equation L(f)-4f =0, subje':ct 1o any
self-adjoint set of boundary conditions, are all real, and that‘ elgeznfunc-
tions corresponding to different eigenvalues are orthogonal in L*(0,/).

d. One can show that the analogue of Theorem 3.10 holds here, i.e., there
is an orthonormal basis of eigenfunctions. For example, consider the
boundary conditions f(0) = f7(0) = 0, f(/) :=.f’_’(l) = 0. Show that
fa(x) = sin(nzx/l) is an eigenfunction. What is 1its elgenyalue? Why
can you guarantee immediately that there are no other independent
eigenfunctions?

9. Suppose p, ¢, and r are real functions of class C @ and _that r> 0. The
differential equation rf" +qf +pf+Af = 0 can be written in the form
L(f) + Awf = 0 where w is an arbitrary positive function and L(f) =
wrf" +wgf +wpf. Show that w can be always be chosen so that L is
formally self-adjoint. '

The following two problems use the fact that the general solution of the Euler

equation
X2 +axf (x)+bf(x)=0 (x>0)

is ¢;x™ + c,x™ where r; and r, are the zeros of the polynomial r(r — 1) +ar +b.
(If the two zeros coincide, the general solution is clqc;* + cpx"logx.) In case ry
and r, are complex, it is useful to recall that x* = "7 '8~

10. Find the eigenvalues and normalized eigenfunctions for the problem

CfY +ax71f =0, f()=f(b)=0 (b>1).

Expand the function g(x) = 1 in terms of these eigenfunctions. (Hint: in
computing integrals, make the substitution y = logx. Orthonormality here
is with respect to the weight w(x) = x~1.) ‘

11. Find the eigenvalues and normalized eigenfunctions for the problem

Y +Af=0,  f()=fB)=0 (b>1)
12. Consider the Sturm-Liouville problem
rfY +pf+if=0, fla)=f(b)=0. (%)
a. Show that if f satisfies (xx), then
b b b
2 — 112 _ 2 dx.
A/a P dx /ar}f]dx /aplfi
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b. Deduce that if p(x) < C for all x, then all the eigenvalues A of (#%)
satisfy A > ~C. )

c. Show that the conclusion of (b) still holds if the boundary conditions
f(a) = f(b) = O are replaced by f(a)-af(a) = f'(b)-Bf(b) = O where
a <0and § >0. (Hint: The analogue of part (a) in this situation is

b b b
A 1Pdx= [CnpPde- [ pifRdx s e -er@)f@).)

3.6 Singular Sturm-Liouville problems
In §3.5 we considered the differential equation
4+ v pf+iwf=0 (3.39)

on a closed, bounded interval [a, b], in which 7, 7/, p, and w were assumed con-
tinuous on [a, b] and r and w were assumed strictly positive on [a, b]. However, it
often turns out in practice that one or more of these assumptions must be weak-
ened, leading to the so-called singular Sturm-Liouville problems. Specifically, we
allow the following modifications of the basic setup:

(1) The leading coefficient r may vanish at one or both endpoints of [a, 8]. In ad-
dition, the weight w may vanish or tend to infinity at one or both endpoints,
and the function |p| may tend to infinity at one or both endpoints.

(ii) The interval [a, ] may be unbounded, that is, g = —oo and/or b = co.
There is an extensive theory of these more general boundary value problems,
but it is beyond the scope of this book. (Complete treatments can be found
in Dunford-Schwartz [18] and Naimark [40]; see also Titchmarsh [52)) -We
shall merely sketch a few of the main features here, and we shall discuss specific
examples in Chapters 5 and 6 and Sections 7.4 and 10.4.

The first problem is to decide what sort of boundary conditions to impose.
Since we wish to use the machinery of inner products and orthogonality, we
wish to use only solutions of (3.39) that are square-integrable. Now, in the reg-
ular case, all solutions of (3.39) are continuous on [g, b] and hence belong to
L%(a,b). However, under condition (i), the solutions to (3.39) may fail to be
square-integrable because they blow up at one or both endpoints; whereas un-
der condition (ii), solutions may fail to be square-integrable because they do not
decay at infinity. Thus, we distinguish two cases concerning the behavior of
solutions at each endpoint; to be definite, we consider the endpoint a.

Case 1. All solutions of (3.39) belong to L% (a,c) for a < ¢ < b. (It turns
out that if this condition is satisfied for one value of 4, then it is satisfied for all
values of 1.) In this case, we impose a boundary condition at . In some cases it
may be of the form af(a)+d’ f'(a) = 0, as before, but it may also be a condition
on the limiting behavior of f and f” at a — for example, the condition that J(x)
should remain hounded as ¥ — 2

|
i
|
|
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Case 1I. Not all solutions of (3.39) belong to Li(a,c). I.n this case we i.mpose-
no boundary condition at a beyond the one that automatically comes with the
problem, namely, that the solution should belong to L2(a, b). o

In any event, we require the boundary conditions to be self—afijomt, ie., }f
f and g satisfy the boundary conditions then the boundary' term in Lagrange’s
identity should vanish. Precisely, since f and g may have singularities at a and
b, or a and/or b may be infinite, this requirement should be formulated as

lim [r(/'2 - ) =0 (3.40)

S,e—0 a+d

(3.40) implies that
(L(f),8) = (f,L(g)) where L(f)=(rf) +pf,

for any smooth functions f and g that satisfy the boundary conditiong, and
once this equation is established, the proof of Theoren_l 3.9 goes through w;th_out
change. Therefore, the eigenvalues are all real and the eigenfunctions with distinct
eigenvalues are orthogonal to each other. . '

However, the situation with Theorem 3.10 is different; in general, there is no
guarantee that there will be enough eigenfunctions to make an or’thionqmal ba_szs.
Sometimes there are, sometimes there aren’t. In the latter case, 1t is st11} possxt?le
to expand arbitrary functions in Lﬁ,(a, b) in terms of §olutions of the d1ﬁ'§rent1g1
equation (3.39) that satisfy the given boundary ccndn{ons,.but th.e expansion will
involve an integral rather than (or in addition to) an infinite series.

For example, consider the differential equation

f"+if=0 on (—~o0,00).
The general solution is
ciCoSUX + ¢ysinvx  or 1 4 e (A =1v2).
None of these functions, for any value of A, belongs to L*(—o0,00), except for
the trivial case ¢; = ¢; = 0. However, any f € L?(—o0,00) can be written as

a “continuous superposition” (i.e., integral) of the functions e"”x as v ranges
over all real numbers, by means of the Fourier transform. This is the subject of

Chapter 7.

CHAPTER 4
SOME BOUNDARY VALUE PROBLEMS

This chapter is devoted to the solution of various boundary value problems by
the technigues we have developed so far, namely,

(i) separation of variables,

(ii) the superposition principle, and
(iii) expansion of functions in series of eigenfunctions.
This subject was begun in §2.5. All the major ideas we need are already in
place, and it is just a question of learning how to combine them efficiently and
developing a feeling for the connection between the mathematics and the physics.
In the first section we discuss a few useful general techniques; the remainder of
the chapter is largely devoted to working out a variety of examples.

Our methods generally lead to solutions in the form of infinite series. In
this chapter we shall not worry much about technical questions of convergence,
termwise differentiation, and such things. In some cases, one can verify that the
series converge in a sufficiently strong sense to justify all the formal manipula-
tions according to the principles of classical analysis; even when this is not the
case, one can usually establish the validity of the solution by interpreting things
properly — for example, by abandoning pointwise convergence in favor of norm
convergence or the notion of weak convergence that we shall develop in Chapter
9. These issues were discussed in some detail in §2.5 for the boundary value
problems solved there, and similar remarks apply to the problems considered in
this chapter. At any rate, our concern here is with finding the solutions rather
than with a rigorous justification of the calculations.

We shall also not worry about questions of uniqueness. That is, our methods
will produce one solution to the boundary value problem, and we shall not try to
prove rigorously that it is the only solution. In general, a problem that is properly
posed from a physical point of view will indeed have a unique solution; or at least
any non-uniqueness will be easily visible in the physical setup. (See John [33] or
Folland [24] for further discussion of these matters.)

We shall point out here and there how Sturm-Liouville problems of a rather
general sort turn up in applications. However, when we perform specific calcu-
lations, we must limit ourselves to the differential equations that we can solve
explicitly — and at this point, this means mainly the equation f” +Af = 0 or
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its close relative x2f" + 2x f' + Af = 0 (discussed in §4.3). We shall solve some
problems involving more complicated equations in Chapters 5 and 6.

4.1 Some useful techniques

We begin this chapter by discussing the sort of problems we shall be considering
and assembling a bag of tricks for them. To put the discussion on a concrete
level, let us think of the boundary value problems for the heat and wave equa-
tions that we solved in §2.5. In these problems we were solving a homogeneous
linear differential equation L(«) = O (either the heat or the wave equation) for a
function u(x,) on the region a < x < b, 1 > 0. We imposed some homogeneous
linear boundary conditions on # at x = g and x = b, and some linear initial con-
ditions on u at ¢ = 0. Let us write the boundary conditions as B(u) =0 and the
initial conditions as I(u) = h(x), with the understanding that each of these single
equations may stand for several equations grouped together. (For example, for
the vibrating string problem, “B(u) = 0” stands for “u(0,¢) = 0 and u(/,t) = 0,”
and “I(u) = h(x)” stands for “u(x,0) = A;(x) and uy(x,0) = hy(x).”) Thus the
boundary value problem has the form

L)=0, Bw=0, Iu)=hx). (4.1)

The technique for solving (4.1) was to use separation of variables to produce an
infinite family of functions u(x,?) = ¥ cndn(t)¥a(x) that satisfy L(u) = 0 and
B(u) = 0, and then to choose the constants ¢p appropriately to obtain I(u) = h(x).

In the examples we considered in §2.5, the boundary conditions were such
as to lead to Fourier sine or cosine series. In this chapter we shall consider
other homogeneous boundary conditions. These will yield other Sturm-Liouville
problems and hence lead to infinite series involving the eigenfunctions for these
problems. The particular eigenfunctions will differ from problem to problem, but
the method of solution is the same in all cases.

We shall also generalize (4.1) by considering inhomogeneous equations and
inhomogeneous boundary conditions:

Lu)=F(x,1), B)y=g@), Iu)=h(x) (4.2)

There are several techniques for reducing such problems to more manageable
ones. We now discuss these techniques on the general level; specific examples
will be found in subsequent sections. The reader may find it helpful to read
this material in conjunction with the examples, rather than trying to absorb it
completely before reading further.

Technique 1: Use the superposition principle to deal with inhomogeneous terms
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In problem (4.2) there are three inhomogeneous terms: F, g, and 4. Sup-
pose we can solve the three problems obtained by replacing all but one of these
functions by zero:

Lw)=0, B =0, I(u)=Ah(x), (4.3)
Lw)=0, Bw=gt), Iu) =0, (4.4)
L) =F(x,), Bw=0, Iu)=0. (4.5)

If uy, uy, and u; are the solutions to (4.3), (4.4), and (4.5), respectively, then
U= up+ Uyt U will be the solution of (4.2). In particular, (4.3) is just (4.1),
which we already know how to deal with, so it suffices to solve (4.4) and (4.5).

We remark that this method can sometimes be used to break down the prob-
lem still further. For example, if we are working on the interval a < x < b,
the boundary condition B(u) = g(¢) generally stands for two conditions, one at
x =g and one at x = b, say By(u) = gu(¢) and By(u) = g,(¢). If we can solve
the (probably simpler) problems obtained by replacing one or the other of the
functions g, and g, by zero, we can solve the original problem by adding the
solutions to the two simpler problems.

Let us now turn to the inhomogeneous differential equation L(u) = F(x,1).
Sv:u')pose the homogeneous equation L(u) = 0 with homogeneous boundary con-
ditions B(u) = 0 can be handled by separation of variables, leading to solutions
u{x, t). = > cndn(x)yn(t) where the ¢n’s are the eigenfunctions for a Sturm-
Liouville problem. Then the same sort of eigenfunction expansion can be used
to produce solutions of the inhomogeneous equation L(u) = F(x,t) subject to the
same boundary conditions B(u) = 0. Namely, for each ¢ we expand the function
F(x,t) in terms of the eigenfunctions ¢, (x),

F(x,t) = ca(t)pn(x),

and we try to find a solution # in the form

u(x,1) = 3 wn(t)gn(x),

\yhere the functions wx(¢) are to be determined. If we plug these series into the
d}fferentia] equation L(u) = F, the result will be a sequence of ordinary differen-
tial equations for the unknown functions wx (1) in terms of the known functions
cn(t). These equations can be solved subject to whatever initial conditions at
t'= 0 one may require. The resulting function u(x,¢) then satisfies the differen-
tial equation L(u) = F and the desired initial conditions; it satisfies the boundary
congitions B(u) = 0 because they are built into the eigenfunctions ¢,. In short,
we have:

Technique 2: The Sturm-Liouville expansions used to solve L(u) = 0 with homo-
geneous boundary conditions B(u) = 0 can also be used to solve the inhomogeneous
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Another useful device is available for solving (4.2) when the inhomogeneous
terms F and g are independent of &

L(u) = F(x), B(u)=c, I{u) = h(x). (4.6)

(We have written ¢ instead of g to remind ourselves that it is constant.) In this
case, the differential equation L(u) = F with boundary conditions B(y) = ¢ may
admit steady-state solutions, that is, solutions that are independent of ‘t. The
superposition principle (Technique 1) can be used to break (4.6) down 1into _the
problem of finding a steady-state solution and solving the homogeneous equation
with given initial conditions: If uy(x) and v(x, f) satisfy

L(ug) = F(x),  Blug)=c, (4.7)
L{v) =0, B(v)=0, I(v) = h{x) — up(x), (4.8)

then u(x, t) = ug(x)+v(x, t) satisfies (4.6). (4.7) is relativel‘y easy to solve pecagse
it is only an ordinary differential equation for 1y, and (4.8) is just (4.1) again (with
different initial conditions). To summarize:

Technique 3: To solve an inhomogeneous problem with time-independent data,
reduce to the homogeneous case by finding a steady-state solution.

Technique 3 is not infallible. Sometimes there is no steady-state solutiqn;
that is, the boundary conditions B(ug) = ¢ are incompatible with the differential
equation L(ugy) = F(x) when ug is independent of . (When this l}appens, there
is usually a good physical reason for it.) We also observe that in the case of
homogeneous boundary conditions B(u) = 0, Techniques 2 and 3 can both be
used to solve the equation L(u) = F(x). The solutions may differ in appearance
(the first one involves a series expansion for F), but they are actually the same.

There remains the question of solving problems with inhomogeneou§ bound-
ary conditions B(u) = g(¢) that are time-dependent. Often the most efficient jtoc?l
for handling such problems is the Laplace transform; see §8.4. However, 1t is
worth noting that the superposition principle can be used to trade off inhomoge-
neous boundary conditions for inhomogeneous equations. Namely, suppose we

wish to solve
L{u) =0, B(u)=g(1), Hu)=0. (4.9)

Let w(x, t) be any smooth function that satisfies the boundary conditlions Bw)=
g(t) and the initial conditions I(w) = 0; such functions are relatwely'eas?y to
construct because no differential equation needs to be solved. But then u satisfies
(4.9) if and only if v = u — w satisfies

L(w)=F(x,t), B@)=0, I(v)=0,

where F(x,t) = —L(w). In this way, problem (4.4) can be reduced to problem
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The preceding discussion has been phrased in terms of time-dependent prob-
lems for ease of exposition, but the techniques we have presented apply equally
well to problems not involving time, such as the Laplace equation in two space
variables x and y, with one of these variables playing the role of 7. Here there are
no “initial conditions” as opposed to “boundary conditions” but rather boundary
conditions pertaining to different parts of the boundary; and “steady-state solu-
tions” are to be interpreted as solutions that depend on only one of the variables.
But the same ideas still work.

4.2 One-dimensional heat flow

In §2.5 we solved the problem of finding the temperature u(x,¢) in a rod that
is insulated along its length and occupies the interval 0 < x < /, given that the
ends of the rod are either (a) insulated or (b) held at temperature zero. (The
reader may prefer to think instead of a slab occupying the region 0 < x < / of
xyz-space, where conditions are such that variations in temperature in the yz-
directions are insignificant. The mathematics is the same.) Here we play some
more complicated variations on the same theme.

Newton’s law of cooling

Consider the same rod as before, and suppose the ends of the rod are in contact
with a medium at temperature zero; but now suppose that the boundary con-
ditions are given by Newton’s law of cooling: the temperature gradient across
the ends is proportional to the temperature difference between the ends and the
surrounding medium. That is, we have the boundary value problem

Uy = Kilxx, ux(0,1) = au(0, t), ux(l,t) = —au(l, ), (4.10)

subject of course to an initial condition u(x,0) = f(x). Here a is a positive
constant; the fact that the coefficient is @ at x = 0 and —a at x = [ expresses
the fact that, if u(x,¢) > 0, the temperature will be increasing as one crosses the
boundary at x = 0 from left to right and decreasing as one crosses the boundary
at x = [ from left to right (and vice versa if u(x, ) < 0). The cases of insulated
boundary, or boundary held at temperature zero, are the limiting cases o — 0
and o — oo of this setup.

We apply separation of variables. As before, if we set u(x,1) = X(x)T(#) in
(4.10) and call the separation constant —k2, we obtain the differential equation
T’ = ~kv*T for T and the Sturm-Liouville problem

X'+v*X =0, X'(0)=aX(0), X'()=-aX(l) (4.11)

for X. We solved this problem in §3.5, and the analysis there shows the following:
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(ii) The positive eigenvalues are the numbers v2 such that v satisfies

2av
tanvl = m,
and there is an infinite sequence v; < vy < -+ of §uch v’s. (See Figure 3.5
for the case o = 1.) The normalized eigenfunction corresponding to the

eigenvalue v7 is

bn(x) = di }(vn cOSVRX + asinvyx)

where
d? = %(V,% + o) +a

(iii) The negative eigenvalues are the numbers —u? such that u satisfies

—2op
tanhl[l-——- Iu2+a29

but there are no solutions of this equation since the left and right sides always

osite signs.

11?;2 (\;pepcan solwgrz:1 the boundary value problem (4.10) subject to the initial
condition u(x,0) = f(x). Namely, we expand f in terms of the functions ¢,
which we know to be an orthonormal basis for L2(0,1): f = 5(f, ¢n)én. Then we
solve the differential equation T’ = —kvZT with initial value (f, ¢n), obtaining
T(t) = {f, ¢n) exp(—kvit). Finally, we put it all together, obtaining

u(x, 1) = i(f, ) exp(~ B E) (%)

o °
= Z o exp(—kv2t)(vn cosvnx + asinvax)
1

(¥Z + o)l +2a

where ;
Cn = / f(x)(vncosvnx + asinvpx) dx.
0

Since all the eigenvalues are positive, the solution approaches zero exponentially
fast as ¢ — oo: this is just what one would expect physically.
Suppose we replace (4.10) by

Ur = ktixx, ux(0,8) = u(0,1), ux(l,t)=4u(l,1). (4.12)

Here the left boundary condition is just as before with o = 1, but the right
boundary condition is physically unreasonable: It says that heat is being pumped
into the rod at the right end when the temperature of the rod is already greater
than that of the surroundings, and sucked out when the temperature of the rod is
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get. We solved the relevant Sturm-Liouville problem in §3.5, and we found that
in addition to the sequence {1/,%}‘1>o of positive eigenvalues, with eigenfunctions
{#n}5°, there is one negative eigenvalue —,u(z), with eigenfunction ¢y. The solution
of (4.12) with initial data f is then

u(x,2) = (£, o) exp(kidt)go(x) + 3/, bn) exp(~kut)pn(x).
1

Here the term involving the negative eigenvalue grows exponentially as ¢ — oo,
unless by some chance (f, ¢g) = 0. But this is to be expected: If the rod is
initially hot, it keeps getting hotter because heat is being pumped in at the right
end. So the mathematics still makes some physical sense even when the physics
is unrealistic!

Inhomogeneous boundary conditions

So far we have always assumed that both ends of the rod or slab are exposed to
the same outside temperature. But perhaps the rod goes through a wall (or the
slab is a wall) between two rooms at different temperatures: The temperature on
the left is zero, for instance, and the temperature on the right is 4 # 0. Then we
should impose the boundary conditions

u(0,t) =0, u(l,t) = A (4.13)
or, for Newton’s law of cooling,
ux(0, 1) = au(0,1), ux(l,t) = —cfu(l,1) - Al (4.14)

These are inhomogeneous boundary conditions that do not depend on time, so
we apply Technique 3 of §4.1 to find a solution. That is, we begin by finding
the steady-state solution ug(x) of the heat equation that satisfies (4.13) or (4.14).
This is easy: For a function u, that does not depend on ¢, the heat equation
simply becomes 4y = 0. The general solution of this equation is ug(x) = cx + d,
and we have merely to determine the coefficients ¢ and d so that ug satisfies (4.13)
or (4.14). For (4.13) the solution is

ug(x) = (4/1)x,

and for (4.14) the solution is
A
uo(x) = m(ax + 1).

Now we can solve the heat equation with initial data u(x,0) = f(x), subject
to the boundary conditions (4.13) or (4.14) — let us say (4.13), to be definite.
Namely, we set
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Then u satisfies
U = Klxx, u(0,6)=0, u(l,t)=4, u(x,0)=f(x)
if and only if v satisfies
v=kver, 0O, =v(1)=0  v(x0)=f(x)-(4/Dx.

Thus we now have homogeneous boundary conditions for v, with slightly different
initial data. As we know from §2.5, we can solve this problem by expanding
f(x) = (4/D)x in a Fourier sine series; and we have essentially computed the

Fourier sine series for (4//)x in §2.1:

~1)* L nax
sin =5,
nm {

A .24
TEX (

The result is

st ) 1yl
’U(X, t) = Z (bn — ‘2-A_("_z_7lz_>____~) e""zﬂzkt/lz Sin n?x’
1

I
b,,:gf f(x)sin@—}-c—dx,
I'Jo [

and hence

u(x, 1) = -‘-?—x +v(x,1)

o0 o0
R 24(-1)™! k)P i HTX w2kt o NX
-—;-—T(l—e )s1n—7—-—+;bne sin —7~.
The first sum here represents the solution that starts at 0 at time ¢ = 0 and rises
to the steady state (4/[)x because of the influx of heat from the right, whereas
the second sum represents the transient effects of the initial temperature f(x).

The inhomogeneous heat equation

Having considered inhomogeneous boundary conditions, we now consider the
inhomogeneous differential equation u; = kuxx + F (x,t). Here F(x,t) models
the effect of some mechanism that adds or subtracts heat from the rod — perhaps
some heat sources along the length of the rod, or a chemical or nuclear reaction
within the rod itself. (F is measured in degrees per unit time; it represents the
rate at which heat is being produced.) To-be definite, let us suppose that the rod
is initially at temperature zerd and is held at temperature zero at both ends; thus,

we wish 1o solve
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If the inhomogeneous term is independent of ¢, ie., F(x,?) = F(x), we
can use the same device as in the previous example. That is, we first solve the
steady-state problem

kuf + F(x) =0,  uy(0) = ug(l) =0,

which is easi'ly accomplished by integrating —F (x)/k twice and choosing the
constants of integration appropriately. Then the substitution #(x,?) = ug(x) +
v(x, ) turns (4.15) into

U = kUxy, v(x,0) = —up(x), v(0,t)=v(],1) =0,

which we have already solved by means of Fourier sine series.

qu the general case, we can use Technique 2 of §4.1. The eigenfunction
expansion that solves the homogeneous case F = 0 is the Fourier sine series.
Hence, we begin by expanding everything in sight in a Fourier sine series:

o0

u(x,t) = ; ba(t) sin i’llzﬁ F(x,f) = ; Bn(t) sin F-?‘-’-‘ (4.16)

Here the coeﬁicient§ fn are computed from the known function F in the usual
way, anq the coefficients b, are 1o be determined. If we plug these series into the
differential equation (4.15), we obtain

o= 1/ . X 22
3 ba(t)sin == = (-—1’—.7’;-’2@,,(;) ¥ m(z)) sin 7%,
I

and equating the coefficients of sin(nzx//) on both sides vields

2.2
bi(e) + -’?—7";;’21),,(:) = Ba(D).

This is '71 first-order ordinary differential equation for by, and it is easily solved
by multiplying through by the integrating factor en'nkil,

gf {bn(t) exp (nz?;kt)} = Ba(t) exp (E.z_’li;@) .

¥ntegrating both sides and remembering that 5,(0) = 0 (from the initial condition
in (4.15)), we find that

2.2
ba(t) = exp (—-” i ’“) [ Bns)exn (ﬁ-’g—kﬁ) ds,  (@17)
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The sharp-eyed reader will have noticed that this line of argument needs
some justification. We differentiated the series u = ¥ b4 (¢) sin(nzx/l) termwise
with respect to ¢ and x without really knowing what we were doing, since the
coefficients b, (and hence the convergence properties of the series) were as yet
unknown. Only after we have found formula (4.17) and substituted it into (4.16)
can we see that the function  thus defined really solves the problem. (It always
does 50 in the weak sense discussed in §9.5. Moreover, if the function F (x,2)
is such that its Fourier sine coefficients f§, tend to zero reasonably rapidly as
n — oo, the same will be true of the coefficients b, of u in view of (4.17), and
one can then show that  satisfies (4.15) in the ordinary pointwise sense.)

Example. Suppose the rod is radioactive and produces heat at a constant rate
R. Thus the problem to be solved is

U = kuxx + R, u(x,0) =0, w(0,8) =u(l,t) = 0.

Employing Technique 3, we first solve
ug(x) = —R/k,  ug(0) = up(l) =0,

to obtain
ug(x) = (R/2k)x(l - x).

Next we solve
Uy = kU.XX:

v(x,0) = —up(x),  v(0,1) =v(l,1)=0

by expanding uy in its Fourier sine series (cf. Exercise 10, §2.4)

R __4I*R I . nuax
EEX(I“X)—W Z ;Z-§SIH'7—~ (O<x<l)
n=1,3,5,...
1o obtain ) ),
_ _4I°R 1 nenckt . nmnx
v(x,t) = % _E 3 €Xp —pr— sin —
n=1,3,5,...
and hence

u(x, 1) = up(x) +v(x,1)

_4°R 1 -n?alkt\ . nnx (4.18)
=5 n=§5 “ P (1 ~exp —; sin —=.

(See Figure 4.1.) s
Employing Technique 2, we expand u(x,t) and the constant function R in
Fourier sine series (cf. Exercise 1, §2.4):

u(x,t) =3 ba()sin 2%, R 2R 3 LsinX ocx <),
1

! T n=1.3.5.. !
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FIGURE 4.1. The temperature function u(x, t) given by (4.18) with k = 0.5,
R=13,and/=1,ontheregion0<x<1,0<r<]1.

The differential equation for u then gives

2.2
/ nemn'k _[4R/nxm, n odd,
bnlt) + bl = {O, n even.

The solution to this equation with initial value 0 is

41’R —n?n’kt
bn(l) = m (1 — €X "*72‘-‘—)

for n odd and bx(t) = O for n even, which again gives the solution (4.18).

Heat flow in ronuniform materials

One can also consider heat flow in rods or slabs of nonuniform composition,
where the specific heat density ¢ and the thermal conductivity X vary from
point to point. In this case the (homogeneous) heat equation becomes g (x)u, =
(K(x)ux)x (see Appendix 1). All of what we have done works in principle for
this more general situation; the difference is that one must solve boundary value
problems for the Sturm-Liouville equation (K (x)/") + Ag(x)f = 0 rather than
kf"+Af =0 (with k constant).

EXERCISES

All these problems concern heat flow in a rod on the interval [0, /]; in all except
the last one, it is assumed that heat can enter or leave the rod only at the ends.
1. Suppose the end x = 0 is held at temperature zero while the end x = [ is
insulated.
a. Find a series expansion for the temperature u(x, ) given the initial tem-
perature f(x).
b. What is u(x.t) when f(x) = 507
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2. Repeat Exercise 1a, replacing the assumption #(0,?) = 0 by the assumption
w(0,)=C#0.

3. Repeat Exercise 1a, replacing the assumption that ux(/,#) = 0 by the as-
sumption ux{/,f) = 4 (i.e., heat is being supplied at a constant rate at the
right end).

4. Repeat Exercise 1a, assuming that the rod generates heat within itself at a
constant rate R, so the heat equation is replaced by u; = Kuxx + R.

5. Take / = 7 and solve: uy = Kuxx + e~ sinx, u(x,0) = u(0,1) = u(n,1) = 0.

6. In the example of the radioactive rod, suppose that the reaction that produces
the heat inside the rod dies out over time, so that the differential equation
is uy = ktixx + Re~¢. What is the solution?

7. Suppose that a rod is insulated at both ends, has initial temperature zero,
and generates heat within itself at the constant rate R; thus, #; = kuxx + R
and u(x,0) = ux(0,1) = ux(l,1) =0

a. Show that Technigue 3 doesn’t work here, that is, there is no steady-
state solution of u; = kxx + R, ux(0,1) = ux(/,#) = 0. Why is this to
be expected physically?

b. Solve the problem by Technique 2 (or by making a clever guess).

c. Solve the problem with the constant R replaced by Re™.

8. Solve: uy = kuxx, ux(0,1) =0, ux(l,¢) + bu(l,t) =0 (b > 0), u(x,0) = 100.
(Cf. Exercise 5, §3.5. What is the physical interpretation?)

9. Let k(x) be a smooth positive function on [0,/]. Solve the boundary value
problem u; = (kux)x + f(x, 1), u(0,2) = u(l,t) = u(x,0) = 0, in terms of the
eigenvalues {4, } and the eigenfunctions {¢»} of the Sturm-Liouville problem
(kfY +2f=0, f(0)= f(I)=0

10. We have always supposed that the rod is insulated along its length. Suppose
instead that the surroundings are at temperature zero, and that heat transfer
takes place at a rate proportional to the temperature difference (Newton’s
law). A reasonable model for this situation is the modified heat equation
Uy = Kuxx — hu, where # is a positive constant.

a. Show that u satisfies this eguation if and only if u(x,?) = e"’”v(x, £)
where v satisfies the ordinary heat equation. Show also how this result
could be discovered by separation of variables.

b. Suppose that both ends are insulated and that the initial temperature is
f(x) = x. Solve for u(x,1).

¢. Suppose instead that one end is held at temperature 0 and the other is
held at temperature 100, and that the initial temperature is zero. Solve
for u(x,t). (Use Technique 3, and cf. entry 20 in Table 1, §2.1.)

4.3 One-dimensional wave motion

-

In §2.5 we analyzed the vibrating string problem,

Uer = Pt . D =ull. =0, uwx.0=7f(x). ulx.0)=glx)
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by means of Fourier sine series. We now consider some related boundary value
problems.

The inhomogeneous wave equation

We can add an inhomogeneous term to the vibrating string problem to represent
an external force that affects the vibrations:

Uit = ey + Fix,1),

u®, ) =u(l,n) =0, u(x,0)=f(x), u(x,0)=gx). (4.19)
For example, if the string is an electrically charged wire, F could result from a
surrounding electromagnetic field.

The techniques that we developed in §4.1 and used in §4.2 to solve the
inhomogeneous heat equation work equally well here. If F is independent of ¢,
one can first find a steady-state solution uy(x) by integrating F twice and then
solve the homogeneous wave equation for v = u~ u; with the initial displacement
S replaced by f—uy. Or, for the general case, one can expand u(x,t) and F(x, t)
in Fourier sine series in x for each ¢,

an sm@, Flx,t)=> " Bn (t)smﬂ;—x—
i

yielding a sequence of ordinary differential equations for the Fourier coefficients
of u in terms of those of F, namely,

2
) + n? ” ¢! ba(t) = Bal?), (4.20)

These equations can be solved by standard techniques such as variation of pa-
rameters or Laplace transforms (see §8.3 or Boyce-diPrima [10]); the solution
with initial conditions £,({0) = b,(0) = 0 is

!

bal1) = h‘;lz‘a [(sin ﬁfi%i:ﬂﬂn(s) ds. (4.21)

This formula leads to the solution of (4.19) with initial conditions f = g = 0.
But then to solve (4.19) with arbitrary initial data f and g, by the superposition
principle (Technique 1) one is reduced to solving the Aomogeneous wave equation
with these initial data; and this we have already done. (As with the heat equation,
these calculations show only that u = 3~ b, (¢) sin(nnx/I), with b,(¢) defined by
(4.21), is a reasonable candidate for a solution; further arguments are needed for

a rionrmie petahlichment nf the fart that it reallss warke )




110 Chapter 4. Some Boundary Value Problems

Vibrations with free ends

Another boundary value problem of interest for the wave equation is obt_ained
by requiring that the spatial derivative ux rather than u itself should vanish at

the endpoints:

Uy == Czuxx, (4.22)
ux(0,1) = ux(l,1) = 0, u(x,0) = f(x), wuix,0)=g(x).

If one thinks of a vibrating string, this represents a string whose ends are free
to move on frictionless tracks along the lines x = 0 and x = / in the xu-plane.
The condition that #x = O at the endpoints expresses the fact that.there are
no forces directed along the tracks to oppose the tension in the string. This
may seem a rather artifical situation, but more natural inte'rpreta'tion§ of (4.22)
are available. For one, (4.22) is a model for the longitudinal vibrations of an
elastic rod or a spring that is free at both ends. (“Longitudinal” means that jche
vibrations involve displacements of the material along the x-axis by compression
and extension of the rod or spring, rather than displacements perpendicular t'o
the x-axis as in the vibrating string.) An even better interpretation of (4.22) is
as the longitudinal vibrations of a column of air that is open at bth ends, such
as a flute or organ pipe. In the case of the flute, for exa.mpI.e, mpsmal notes are
produced by vibrations of the air within the flute; these v1brat19ns are largely
confined to the interval between the hole where the moving air is introduced by
the player and the first open finger-hole. _ .

The mathematics of (4.22) is very similar to the vibrating string problem,
except that one uses Fourier cosine series rather than sine spries. 'Indeed, we
can solve the problem by expanding everything in Fourier cosine series from the
outset: If we substitute

— nmx 1 = nLx
f(x)=}ag+_ ancos 7 glx)= zao+;anC°ST ’
1

u(_x, t) = %Ao([) -+ ZAn(t) Ccos "}‘?.‘x‘,
1

into (4.22), we obtain the ordinary differential equations

2,22
A5 ==, An(0) =, A4(0) =i

The solution to this, for n > 0, is

nrct oy . nuct
An(t) =.an cos AR 7 h i

whereas for n =0 it is
Anlt) = an + anl.
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Hence, the solution u of (4.22) is given by

nax nrct  lay nna‘)‘ (4.23)

o0
u(x,t) = %(dg + apt) + ;cos 7 (an cos —— + e sin 7
(As usual, the formal differentiations used in arriving at this formula need to be
justified after the fact. Alternatively, one could arrive at (4.23) by separation of
variables.)

Here there is a bit of a surprise. The terms with # > 0 describe the vibratory
motion of the string (or rod, or spring, or whatever; let us call it the “device”),
and the term %ao is just a constant displacement, of no importance; but if ag #
0, the term %Oﬁgt says that the device as a whole is moving with velocity %ao
— perpendicular to the x-axis in the case of a string, and along the x-axis in
the other cases. Indeed, there is nothing in the setups we have described to
prevent this, since the ends of the device are free to move. The constant %ag =

-1 fé g(x)dx is the average initial velocity of the device; and in the absence of

any countervailing forces the device will continue to move with this velocity. If
the device as a whole stays put, it simply means that ag = 0.

Mixed boundary conditions

Another problem of interest is the one with mixed boundary conditions:

Un = Cuxx,

u(0,0) =ux([,1) =0, u(x,0)=f(x), w(x,0)=g(x).

Here the left endpoint is fixed and the right endpoint is free. One can think of a
string or elastic rod with one fixed end and one free end, or a column of air that
is closed at one end and open at the other, such as a clarinet or a stopped organ
pipe.

After separation of variables, the Sturm-Liouville problem to be solved in
this case is

(4.24)

X"+iX =0, X(0)=X'()=0.

This was the subject of Exercise 3, §3.5, but we shall briefly derive the solution
here. If we set A = v2, the general solution of the differential equation is a linear
combination of sinvx and cosvx. The condition X(0) = 0 implies that X(x) =
csinyx, and the condition X'(/) = 0 then becomes cosv] = 0. This means that
v{ must be 2 half-integer multiple of 7, so the (unnormalized) eigenfunctions are

(n~3)nx

Xn(x) = sin ] — sin 27~ nx

21 ?
We leave to the reader to work out the details, but it should be pretty clear now
that the solution u(x, ) of (4.22) will have the form

n=1,2,3,...

0
S sin (2n - Dmx [an cos 2Rz Dmet | 2oy

~7

i (2n - })nct] _

s1 {4.25)
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There is an interesting difference between the frequency spectra of the waves
(4.23) and (4.25). The nth term of the series in (4.23) represents a vibration with
period 2[/nc, or frequency nc/2/; so the allowable frequencies are the integer
multiples of the “fundamental” frequency ¢/2/. The ath term in (4.25), on the
other hand, has frequency (2n — 1)c/4[; so the allowable frequencies are the odd
integer multiples of the fundamental frequency ¢/4/. In particular, the funda-
mental frequency in the former case is twice as great as in the latter. In musical
terms, this means that an air column open at only one end produces notes an
octave lower than a column of the same length open at both ends, and that its

odd harmonics are missing. (See Figure 4.2.)

O LXK

FigUrE 4.2. Profiles of the vibrations corresponding to the three lowest
eigenvalues in a pipe open at one end (left) and a pipe open at both ends

(right).

These remarks apply to clarinets but not to oboes, saxophones, or any of
the brass instruments. Oboes and saxophones have conical bores (their interior
diameter increases steadily from mouthpiece to bell) rather than the cylindrical
bore of the clarinet (whose interior diameter is essentially constant). The effect
of this, as we shall see in §5.6, is that the frequencies they produce are about the
same as the frequencies of a cylindrical column of the same length that is open
at both ends. In particular, they produce all integer multiples of the fundamental
frequency. The physics of the brass instruments is considerably more complex,
and we shall not discuss it here. For further information on the physics of musical
instruments, we refer the reader to Hutchins [31] and Taylor [51].

Other problems in wave motion

A number of other variations on these themes are possible. For example, one
can add an inhomogeneous term to the wave equation in (4.22) and (4.24), just
as in (4.19), and the same techniques of solution are applicable. One can also
consider inhomogeneous boundary conditions, such as

U = Cuxx,  u(0,8)=0, u(l,t) = h(2).

This might represent a string that is fixed at the left end and is being shaken at
the right end, or an electromégnetic signal being sent down a wire from the end
x = [. We shall solve this problem in §8.4 by using the Laplace transform; for
the time being, we leave it to the reader to work out a special case in Exercise 7,
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' Ope can also f:onsider waves in nonuniform media — for example, a vibrat-

ing str%ng xyhose .lmear mass density p varies from point to point. (Perhaps the

;‘cmng is thicker in some places than in others.) In this case the wave equation
ecomes

i = Tp(x) ™ thxx (4.26)

wherg T is the tension of the string (see Appendix 1). The Sturm-Liouville
equation that results from separation of variables is then "/ +Ap(x)f = 0, which
produces eigenfunctions that are orthogonal with respect to the weight p(x). One
can then solve the wave equation (4.26) by using these eigenfunctions in place of
sines and cosines.

EXERCISES

1. Yerify that the function d,(¢) defined by (4.21) satisfies the differential equa-
tion (4.20) and the initial conditions b,(0) = b5(0) = 0.

2. One end of an elastic bar of length / is held at x = 0, and the other end is
str'etched from its natural position x =/ to x = (1 + &)/. Thus, an arbitrary
point x in the bar is moved to (1+5)x, so its displacement from equilibrium
is bx. At time ¢ = O the ends of the bar are released; thus, u(x,0) = bx and
u(x,0) = 0.

a. Find the displacement u(x, ¢) at times ¢ > 0.

b. Show that the velocity at the left end of the bar alternately takes the
values bc and ~bc on time intervals of length //c. (That is, u(0, ) = bc
for 2ml/c <t < (2m+ 1)l/c and u(0,1) = ~bc for 2m + Dljc <t <
(2m+2)l/c, m=0,1,2,.... Hint: Entry 6 of Table 1, §2.1.)

3. Suppose a horizontally stretched string is heavy enough for the effects of
ggavﬁy to be significant, so that the wave equation must be replaced by uy =
CUxx — 8 where g is the acceleration of gravity. (The boundary conditions
are still u(0,2) = u(l,2) = 0.)

a. Find the steady-state solution ¢(x).

b. Suppose that initially u(x,0) = u;(x,0) = 0. Find the solution u(x,t)
as a Fourier series, and show that

u(x,t) = ¢(x) - 4 [@(x +ct) + Bx - cz)]

;éhgr)e ® is the odd 2/-periodic extension of ¢. (Cf. the discussion in

4, .In‘ Qroblem §4.2'2) discussed in the text, assume that fé g(x)dx = 0 (average
initial velocity is zero), and let A(x) = [ g(&)d&. Show that the solution
(4.23) can be written as

u(x,t) = %[F(x +ct)+ Flx ~ cz‘)] + ilz-[H(x +ct)— H(x — ct)]

Yhere F apd I}T are the even 2/-periodic extensions of f and 4. (Cf. the
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5. Find the general solution of uy; = c*uxx — a’u, u(0,7) = u(l,1) = 0, with
arbitrary initial conditions. This is a model for a string vibrating in an elastic
medium,; the term —a?u represents the force of reaction of the medium
on the string. (Hint: The differential equation is homogeneous; start from
scratch with separation of variables.)

6. In real-life vibrating strings, the vibrations damp out because the strings are
not perfectly elastic. This situation can be modeled by the modified wave
eqguation uy = 2y — 2kuy; the term ~2ku, represents the frictional forces
that cause the damping. (The factor of 2 is purely for convenience.) Find
the general solution, subject to the boundary conditions u(0,1) = u(l,1) = 0.
Assume at first that k < zc/l. What happens if k > 7c/I? (See the hint for
Exercise 5.)

7. A string of length /[ = = (for simplicity) is fixed at one end and attached
to an oscillator at the other, so that #(0,¢) = 0 and u(z,?) = sinkt. If the
string is initially at rest (14(x,0) = u:(x,0) = 0), find u(x,t). (Hints: (1) Let
u(x,t) = v(x,1) + (x/n) sinkt and solve for v. (2) When k # o the general
solution of f”/ +a?f = fsinkt is ¢; cosat + ¢y sinat + (f sin kt)/(a? —k?).)
The typical case is when k/c is not an integer; if it is, the answer will have
a different form due to resonance between the imposed oscillations and one
of the natural frequencies of the string.

8. The total energy of a vibrating string at time ¢, up to a constant factor, is

E(t)= /OZ [ut(x,t)2 + czux(x,t)z] dx.

(The first term is the kinetic energy and the second term is the potential

energy. u is assumed to be real here.)
a. If the string has fixed ends and u(x, ) is written as a Fourier series as

in squatl:][l (’2'2 !)7 S}l: thﬂt
E(l) 2 ; :( ll”) 2 § :'E”'

(In particular, we have conservation of energy: E(t) is independent of
t. This also suggests that a natural physical requirement is that the
series $(nbn)? and ¥ Bj be convergent. This is the case if u(x,0) is
continuous and piecewise smooth and u:(x, 0) is piecewise continuous.
Why?)

b. Derive a similar result for a vibrating string (or bar or air column) with
free ends, with the same formula for E(f).

4.4 The Dirichlet problem

The Dirichlet problem is to find a solution of Laplace’s equation in a region D
that assumes given values on the boundary 8D of D:
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This can be interpreted physically as finding the steady-state temperature in D
yvhen the temperature on 8D is known, or as finding the electrostatic potential
in the charge-free region D when the potential on 6D is known. This problem
can be studleq in any number of dimensions; here we consider the 2-dimensional
case for. certain simple regions in which the method of separation of variables
is eﬁ:ecnve. Some other boundary value problems for the equation V2u = 0 are
considered in the exercises,

The Dirichiet problem in a reciangle

The simplest situation is that of a rectangle. We take the sides of the rectangle to
have length / and L, and we take the origin to be at the lower left corner. T hus,

D=[0,/]x[0,L] = {(x,y):nggz, OsysL},
and the boundary value problem to be solved is

Uxx + Uyy =0,
u(x, 0) = fl(x)a M(X, L) = f2(-x)= u(o:y) = £1 (y)s u(l,y) = gZ(y>

By the sgperposition principle (Technique 1) it will suffice to solve this problem in
the specml cases g1 = & = 0 and f; = f; = 0, as the solution in the general case is
obtained by adding together the solutions for these two special cases. Moreover
the cases g1 = g, = 0 and f; = f; = 0 are equivalent, just by interchanging the’:
roles of x and y, so we work out only the first one:

Uxx + Uyy = O,

w0 =uly) =0, ux0)=A(x), uml)=h) 2

\.NF apply separation of variables. Neglecting the inhomogeneous boundary
conditions for the moment, we search for solutions u that satisfy the homo-
geneous boundary conditions. Taking u(x,y) = X(x)Y(y), we find from the
differential equation that XY + Y"X =0, or Y"/Y = —-X"/X. Setting Y"/Y
and — X" /X equal to a constant 2, we obtain .

X' +viX =0, X(0)=X()=0,
Y -2y =0,

'1?he Sturm-Liouville problem for X is a familiar one that we have seen many
times before: The eigenvalues are 2 = (nn/ 1)? where 7 is a positive integer, and
the correg»ponding eigenfunctions are sin(nzx//). In other words, we are wox’“king
once again with Fourier sine series in x. (Readers who foresaw this outcome
immediately upon looking at (4.27) are to be congratulated on their instincts.)
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is a linear combination of cosh(nzy/I) and sinh(nzy/I), so we are looking at
solutions u of the form

= . nw
u(x,y) =y sin f;ﬁ (O!n cosh 4'?% + B sinh __I_y) , (4.28)
i

and we must determine the coefficients a» and fx to g‘e.t the.right b.oundary
conditions at y = 0 and y = L (“initial” and “final” co.ndlt'ions, 1f you like). We
expand the functions f; and f; in (4.27) in their Fourier sine series:

= 2, . ATX
filx)=>an sin—"—’lﬂc-, fr(x) =§_1:bn sin —7~.
1

On setting y = 0 or y = L in (4.28) and comparing coefficients, we find that

., nnlL
on = dp, oy cosh E’—;—IL + Bnsinh - = by,

or nnl nnL
an = 4n, ﬂn =anSCh——T——anCOth—7"".

The solution is obtained by substituting these formulas into (‘4.28). It can be
expressed more symmetrically by taking sinh[nz(L - »)/!] and smh(fmy /1) asa
basis for solutions to ¥” — (nn/1)*Y = 0 instead of cosh(nzy/!) and sinh(nny/I);

the result is
- - . AT
u(x,y) = sin ﬁ.’;_’_c (An sinh _’}.7_‘_([_}._2)_ + By sinh ___I_J_’) ’
i

nrl
An = an csch ﬂ;—g‘—, By, = by csch -7

The Dirichlet problem in polar coordinates
We next solve the Dirichlet problem in a “polar-coordinate rectangle”
8= {(rcos@,rsin&) trg<r<r,a<8< ﬂ}.
(See Figure 4.3.) For this we need the formula for the Laplacian in polar coor-

dinates: » )
V2u = Uxx + Uyy = Upr +T "Ur+T “Ugp.

This formula is derived in Appendix 4.

- P . “ @ LN VU USRS S SN

4.4  The Dirichlet problem 117

In order to solve the Dirichlet problem on the region S, as in the rectangular
case it will suffice to do the special cases when the solution is to vanish on the two
radial pieces of the boundary or on the two circular pieces of the boundary. We
shall work out the first of these cases here and leave the second one as Exercise
7. By rotating the coordinates suitably we may assume that the initial angle o is
0, so the problem we are to solve is

Urr + 7 Y + 77 %Up =0 in S,
u(r,0)=u(r,ﬂ)==0, u(r1,9)=f(9>, u(r():e):g(e)'
As usual, we begin by looking for product solutions u(r, §) = R(r)©(8) that

satisfy the homogeneous boundary conditions. For such a », Laplace’s eguation
becomes

(4.29)

r*R'(r)+rR'(r) _ 8"(8)
R(r) T ey

50 upon setting both these expressions equal to a constant v? we obtain

8"(6) +1v?0(0) =0, ©(0)=18(B) =0, (4.30)
r*R"(r) + rR'(r) = V2R(r) = 0. (4.31)

The Sturm-Liouville problem (4.30) is our old friend that leads to the eigen-
values v = (n7/B)? and eigenfunctions sin(nn6/f). The equation (4.31) for R
is a special case of the Euler eguation

P () + arf'(r) + bf(r) =0, (4.32)

which is one of the few types of equations with variable coefficients that can be
solved in an elementary way. Namely, just as one uses exponential functions to
solve constant-coefficient equations, one uses power functions to solve the Euler
equation. Substituting f(r) = »* in (4.32) yields

pu—n+ﬂ+QM=a

so if A and 1, are the roots of the quadratic polynomial A% + (@ — 1)A + b, the
functions ' and r* satisfy (4.32). The general solution of (4.32) is then a linear
combination of these two except when A = 4,, in which case the general solution
is a linear combination of 7 and r* logr.

In the case (4.31) with which we are concerned, we have ¢ = 1 and # =
v? = (nn/f)?, so the quadratic polynomial becomes A% — (n7/8)?%, whose roots
are A = nn/B. Therefore, we have found the following sort of solutions to
Laplace’s equation in the region §:

[o.0)
u(r,8) = Zsin F%Q (a,,r’”‘/ﬂ + bnr——nn/ﬂ) ]
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It remains only to choose @ and by to satisfy the remaining boundary conditions
in (4.29). But this is easy: If we expand f and g in their Fourier sine series,

fl8)= Cnsinﬂg, g(6)=2dnsinﬂ@,
1 ﬂ 1 ﬂ

we see that

ant™™P b7 =y w4 burg " = dn,

and it is a simple matter to solve these equations simultaneously for a, and by.
In a similar way we can solve the Dirichlet problem in an annulus

A= {(rcos@,rsin ):rg<r<r, 0 arbitrary},

namely,

wre+ 1 Yy 47 2ugg =0 in 4,  u(r,0)=f(6), u(ro,8)=g(h).

The boundary conditions at § = 0 and § = § are now replaced by the requirement
that u be 2z-periodic in #. Thus, instead of (4.30) we ask for periodic solutions
of ®" + 28 = 0 this forces v to be an integer and gives the eigenfunctions exind
or cos nf and sin n8, with the result that

u(r,0) = (ag +bologr) + S €™ (anr” + bar™). (4.33)
n=t1,%2,..

Now the coefficients a, and b, are found by expanding the periodic functions f
and g in their full Fourier series rather than a Fourier sine series.
Finally, we can let the inner radius 7o tend to zero and consider the Dirichlet

problem on a disc
D= {(xay) x2 4+ < r%} = {(rcos@, rsinf) :r < rl},

that is,
u(ry, 8) = f(9). (4.34)

Here the inner boundary condition has disappeared, but there is still a condition
to be satisfied at » = 0. Functions of the form (4.33) will satisfy Laplace’s
equation in the punctured disc {0 <7 <71}, but they will blow up at = 0 unless
all the terms involving logr or negative powers of r vanish. In other words, we
impose the “boundary condition” on the product solutions u = R® obtained
from (4.30) and (4.31) that they should be continuous at r = 0. The result is that
(4.33) must be replaced by -

Urr + rﬁlur"}’r”zuﬂg =0 inD,

cO
u(r, 0) = Z caritleint

.
.
%
o
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and the condition u(ry, 6) = f(6) means that the numbers ¢,7!"! are the Fourier

coefficients of f. :

From this we can derive a usefi
. ul formula for the solution to (4.34
;g‘;eizégﬂgz ;han ; selges.fTo simplify the calculation a bit, we shall(ta;ke )rlai al?
verily that for the general case one merel . in
. v replaces r b
the following formulas. We recall that the Fourier coefficients of f are ;i:é:lblslrl

1 /7 :
=gz [ F@e ™ ag.

If we substitute this into the formula for #, we obtain

— 1 - nl in T —in 4
urO =gz e [ rgemtds= oL [” fo)p(r0- gy ds

e *)

where P(r, ) is the Poisson kernel:
o K oo o0
P(r, W) = Z rinlemw - z rneiny/ + Z Fhe—iny
-0 0 1

g:;: J§§§1tei:fsie(;nt;1;e -ritght Iallre geor?etric series that converge nicely for r < 1. This
Interchange of integration and summation s

_ we have -

formed, and it also allows one to sum the series in closed form: Just per

P(r,v) = 1 re~ v _ 172
L—retv " 1—re=iv ™ (1—rel¥)(1—re-i)
172

T 1+ Zrcosy’

In short, we have the Poi i i
ey ¢ roisson integral formula for the solution of (4.34) (with

_Lr L-r?
ur0) = o /_,, T2 2rcros(0 —g/ @) e (435)
EXERCISES

Exercises 1-3 deal with the equation V24 = 0 in the square
D={(xy):0sx5l 0<y<i).

1. Solve V2u = 0 in D subj i
ject to the boundary conditions u(x, 0) = =
2 ;(I,g)ﬂ;: 0, u(x,1) = x(I - x). (Cf. Exercise 10, §2.4.) o0 = ul0.y) =
. Fin e steady-state temperature in D if the sid
_ . . esx = 0and x =/
insulated, the side y = Ois held at temperature zero, and the side y = la Z:

hald nd ¢mmmmonmcmbac e - f
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3. Consider the Neumann problem
V2%u=0inD,  ux(0,y) =ux(l,y) = up(x,0)=0, uy(x,0)=rf(x).

(Thus the normal derivative of « on the boundary is prescribed.) Use Fourier
cosine series to find a solution, if possible. Show that a solution exists only
if fol f(x)dx = 0, in which case it contains an arbitrary constant.

4. Find the steady-state temperature in the semi-infinite strip 0 < x < [,0<
y < oo if u(0,y) = u(l,y) = 0 and u(x,0) = f(x). (Hint: On physical
grounds, #(x,y) must be bounded in the strip.)

Exercises 5-8 deal with the equation V2u = 0 in polar coordinates.

5. Suppose the inner side of the annulus {(7,8) : rp < r < 1} is insulated and
the outer side is held at temperature u(1,6) = ().

a. Find the steady-state temperature.

b. What is the solution if f(6) = 1 + 2sin6?

6. Let D be the unit disc {(r,6) : 0 < r < 1}. Let P(r,8) be the Poisson
kernel, and let u(7, ) be the solution of the Dirichlet problem V2u = 0 in
D, u(1,6) = f(8).

a. Show that the value of u at the origin is (27)~" [ f(6)d6. (This is the
mean value theorem for harmonic functions: the value of a harmonic
function at the center of a circle is the average of its values on the circle.)

b. Show that P(r,8) > 0 and that [* P(r,0)df = 2n forall r < 1.

c. Use part (b) to show that if f(6) < M for all 8, then u(r, 8) < M for all
6 and all r < 1. (This is the maximum principle for harmonit functions
in a disc.)

7. Solve the following Dirichlet problem:

Vi =0 inS:{(r,e):0<r05rg 1, 058§[3},
u(rg,8) = u(1,8) =0, u(r,0) = g(r), u(r,B)=h(r).

(Cf. Exercise 10, §3.5.)
8. Consider the Dirichlet problem on the limiting case

Soz{(r,e):OSrgl, 0<0<p}

of the region § in Exercise 7.

a. Solve: V2u = 0 in Sy, u(r,0) = u(r, ) = 0 for r < 1, u(1,0) = f(6).
(This is problem (4.29) in the limiting case ry = 0, and the method used
to solve (4.29) can be adapted. Note that the piece of the boundary
r = ry has collapsed to a point, at which f has already been prescribed
to be zero.)

b. Try to solve the limiting case of Exercise 7: vy =0in Sp, u(1,6) =0,
u(r,0) = g(r), u(r, ) = h(r). (You won’t succeed with the present
methods. Separation of variables leads to the problem (7.f") + (4/r)f =
0, f(1) = 0, which has no eigenfunctions in L% (0, 1). This is a singular
Sturm-Liouville problem whose solution requires integrals rather than
infinite serieg see Fxercise 9. §7.4.)
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nge have seen how Sturm-Liouville problems give rise to orthonormal bases for
L*{a,b), put we have not yet seen any examples of orthonormal bases for L*(D)
?vhere .D is a region in R” with n > 1. However, for rectangular regions - that
1s, regions that are products of intervals — there is a simple way of building
orthonormal bases out of the one-dimensional ones. Specifically, we have the
following theorem. ’

Theorem 4.1. Suppose {¢n}{° is an orthonormal basis for L*(a, b) and > g
an orthonormal basis for L*(c,d). Let (@0 ok

Xmn(X, V) = Gm(X)Wn(y).

Then {xmn} s n=1 is an orthonormal basis for L*(D), where

D=[a,b]x[e,d]={(x,y):a<x <b, c<y<d).

Proof:  Orthonormality is easy:
(Xmns Xmin) = //D Xmn(X, ¥) Xmrne (%, ¥) dx dy

d b
=/c /a S (X)¥n (¥ ) (%) i (v) dx dy

b d
= ( / G (%) B % )dx) ( f v () Uw 0) dy)

={1 ifm=m and n=n’
0 otherwise.

To prove completeness, we shall show that if f € L2(D) and {f, xmn) = 0 for all
m and n then f = 0. (The argument that follows is the truth but not quite the
whole tmt?; we are glossing over some technical points about the workings of the
Ee)biigtue integral. See Folland [25], §2.5, or Wheeden-Zygmund [56], Chapter

d
gn(x) = fc F,y)un(y)dy.

~ Then gn € L*(a, b), for by the Schwarz inequality and the fact that ||y,| = 1,

/ ()P < / ’ ( / ! e, y),zdy) ( ld:wn<y>t2dy) s

b pd
= [ [ e Rdvdx < co.
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Moreover,

wm¢m%=Lbﬁdf@Jﬁﬁxﬂaﬂ§ﬁde=(ﬁxmﬁ=0

for all m, so since {¢m} is complete, we have gn(x) =0 fgr all' n and (almost) all
x. But gn(x) = (f(x,), ¥n), so the completeness of {yn} 1r2nphes that f(x,y)=0
for (almost) all x and y, that is, f = 0 as an element of L(D). i

This theorem is valid (with essentially the same proof) i.n much. greater gen-
erality than our statement of it. Here are four useful extensions of it: .
(i) One can replace the intervals [a, bland [c,d] bysets ACR/ and BCR", in

which case _
D:AxB.-:{(x,y) eR*xed, yeB}.

(ii) One can introduce weight functions. If {_qbn} is azm orthonormal bas1§ for
L%(a,b) and {yn} is an orthonormal basis for Li(e,d), then {¥mn} 1s an
orthonormal basis for L2 (D), where w(x,y) = u(x)v(y).

(iii) One can consider products with more than two factors. For example, suppose
that in addition to the data in the theorem we have an orthonormal basis
{6n} for L*(a, B). Then the products ¢;(x)¥m(y)6n(z) form an orthonormal
basis for L?(D), where

D={(x,y,2):asxsb,CSySd,aszsp’}.

(iv) One can start with an orthonormal basis {wn}or, for L?(c,d), and for oSach
n a different orthonormal basis {¢mn} e fOT L%*(a,b). Then {}(,n,,}m,m.1
is an orthonormal basis for L2(D), where Yma(x,¥) = ¢ma(x)yn(y). This
situation will turn up in Chapters 5 and 6; in particular, see Theorem 5.4 of
%)Snz more comment about the theorem should be made. The assertion that

{xmn} is a basis should mean that if felL*D) .then. f= Z(  Xmn) Xmns but. one

must assign a precise meaning to such a double 1nﬁnlte.senes. In fact, .there is no

problem. One arranges the terms ( Iy Xmn) Xmn in?o a single sequence in any way
one wishes, and the resulting ordinary infinite series always converges in norm to

4 With this bit of machinery in hand, we can find useful series expansipns
for functions of two or more variables. The most basic example is the mt%ltlple
Fourier series for periodic functions. Suppose, t0 b§ specific, that we wish to
study functions f(x,y) that are l-periodic in egch vanab‘le: flx+1,y)= f (x,¥)
and f(x,y + 1) = f(x,y). (Functions of this sort arise, for e?iample, m'the
theory of crystal lattices in splid-state physics.) Such dqubly periodic functions
are competely determined by their restrictions to the unit square

Q=0 110 1={(x.1:0<x.v<1}
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We already know that {e2""*}> is an orthonormal basis for L2(0,1), so it
follows that

{an(x,y) = e2MmX+y) oo < mn < oo}

is an orthonormal basis for L%(S). Thus we can expand any doubly periodic f
that is square-integrable on § in a double Fourier series:

o0

' 1l )
f= Z Cmn Xmn, Cmn:(f,lmn)=/o /0 f(x,y)e2mmx+m) gy gy,

mn=—00

where the series converges (at least) in norm. (The reader should be warned that
the question of pointwise convergence of multiple Fourier series is even more
delicate than in the one-dimensional case, but norm convergence works equally
easily in any number of dimensions.)

Similarly, we can form multiple Fourier cosine or sine series, or combine
other orthonormal bases arising from Sturm-Liouville problems, to construct
bases for functions on rectangular regions; and this procedure can be used to
solve boundary value problems in dimensions #n > 1. We illustrate this with
some examples.

Example 1. We analyze the vibrations of an elastic membrane stretched across
a rectangular frame. That is, we study the following boundary value problem for
the wave equation in two space dimensions:

Uy = Huxx +uypy) for O< x <1, 0<y < L,
u(x,y,0)=f(x,y), ul(x:y50)=‘g(xay)’
u0,y,6) =u(l,y,t) = u(x,0,1) = u(x, L, 1) = 0.

It is pretty clear that we shall want to use a double Fourier sine series to solve this
problem, but let us see explicitly how separation of variables leads to this con-
struction. Neglecting the initial conditions for the moment, we look for product
solutions X (x)Y (y)7(¢) of the wave equation in the rectangle with zero boundary
values. The wave equation for such functions is

TII XII Y/I
TS X TY
The quantities on either side of the last equation must equal some constant, which
we shall call =2, so 7" + v2¢2T = 0 and

X/l Yl/

e EET e e — yz

X Y
Now the quantities on either side of this equation must equal another constant,

which we call —u2. Taking the boundary conditions into account, we therefore
have

XYT'=cHX"YT +XY"T), or

X'+ prX =0, X(0)=X()=0,

s LN e}
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and hence
2 . mMTX
= (;’”771> , X(x) =sn 7 (m=1,2,3,...),
i nn = awefu
2_ 422 (11.71)2, Y(y) = sin “72, (n=1,23,...)

Finally, since 7" + v2c?T = 0, we have
. 2 maN2 nN2
T(t) = ay cosvct + by sinvet where V=t (- = (~—l——> + (—z—) .

Thus we have the following solutions of the wave equation in the rectangle with
zero boundary values:

u(x,y,1)
2 2
> . nm m2  n? . m?  n?
> sin m;'cx sin “Ll Amn COSTCL4 | Tt bmn sinnct Tt 12
m,n=1

The coefficients @mn and bmn are determined by the initial cqnditions in the
usual way: One expands f and g in their double Fourier sine series and matches
coefficients with those of u(x,y,0) and u;(x,y,0). Specifically,

- . mmx _, Am
u(x,,0) = f(x,y) = amn51n—n—17—s1n—1—x,

m,n=1

so that
Amn = IL/ / flx, y)sm X sin ydydx

Qualitatively, the interesting feature here is the set of allowable frequencies
of vibration, namely,

{7!6‘\/(7?1/1)2 +(n/L)2:m,n=1,2, 3,...}.

In contrast to the case of 1-dimensional vibrations, these are not integer multip?es
of a fundamental frequency. For example, if / = L = zc, the lowest frequencies

are V2, v/3, v8, V10, v13, V17, and so forth. For this reason a rectangular
membrane does not usually produce a musical sound as it vibrat?s. gThe more
commonly encountered case of a circular membrane will be studied in Chapter

5.)

.

Example 2. We consider heat flow in a rectangular solid

LS | N NP | [a NP | n/-/I]
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where the top and bottom faces are held at temperature zero and the other four
faces are insulated. Thus, if the initial temperature is f(x,y,z), the problem to
be solved is

M[:—:k(uxx +'Uyy+uzz), u(xsyazaO):f(x:yaz)s
u(X,y,'O, t) = u(x,y,lg,,t) = Oa
”X(O,y,z, Z)= ux(ll,y,z,f) = Uy(X,O, z, Z) = Uy(.x,lz,Z,f> = O

The process of separation of variables works here just as in the previous example,
except that there is one more step (because there is one more variable), and the
boundary conditions lead to Fourier cosine series in x and y rather than Fourier
sine series. We leave it to the reader to work through the details; the upshot is
that

oo} oo oo }12 2 5
u(X, 3, 2,80 = 3 N N €nm,0n,mm, €XD {— (121 12 + Zz) n kt}
ny=0ny=0 n3=1
X m=n
MTX o T2TY

Nz
[ b '

X COS sin
I3

Here €x,5, equals 1 when nl and 7, are both nonzero, Q when one of n; and n,
is zero but not both, and i 7 When n; = n, = 0 (this is to account for the usual
factor of } in the constant term of a Fourier cosine series), and the coefficients
An,nyn, Ar€ the Fourier coefficients of the initial temperature:

b pl
Anynyny = 71—27; / 1 / ’ OSf(x,y,z) cos nllfx cos ﬂzlzty ng,lnz dzdydx.
Example 3. Suppose the rectangular box D of Example 2 is filled with a dis-
tribution of electric charge with density p(x,, z), and the faces of the box are
grounded so that their electrostatic potential is zero. What is the potential inside
the box? What we want is the solution of

Uxx + Upy + Uzz = —4np(x,y,z) in D,
u(O,y,z) = u([hysZ) = U(X,O, Z) = u(x,lz,z) = u(x9y50) = u(.x,y,l?,) =0

Here Technique 2 of §4.1 is effective. Namely, the zero boundary conditions
suggest the use of Fourier sine series in each variable, so we expand « in such a

series:
o0
s X . HaTy nymz
ulx,v,z) = E b sin sin sin .
( ’y’ ) Hinyng ll [2 13

ny,hg,Ay=1
Computing V?u by termwise differentiation, we find
v2u(x,y,2)

o0 2 2 2
n n n - MTX . MY . N3 TZ
= 5—? (7‘71“4‘752‘“*7% ﬂzbmnanz sin 1=~ sin =2 ysm 3=z,
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This must be the multiple sine series for —4z p, so we can solve immediately for
the coefficients bn,nyn,:

-1
32 n: n: ni
bninyny =~ (-i + =2 4 -3

7[[1'1213 112 12 12

I b ol
x / ‘/ p(x,y,z)sin nllrcx sin nzlny n31nz dzdydx.
0 Jo Jo 1 2 3

This formal procedure for solving the problem can be justified easily if we impose
conditions on p so that its Fourier coefficients tend rapidly to zero (e.g., p and
its first few derivatives should vanish on the boundary of the box). It can also be
justified by more sophisticated methods just under the condition that p € L*(D).

EXERCISES

1.

Show that if v(x, ¢) and w(y, t) are solutions of the 1-dimensional heat equa-
tion (v; = kvxx and wy = kwyy), then u(x,y,t) = v(x, Hw(y, 1) satisfies the
2-dimensional heat equation. Can you generalize to 3 dimensions? Is the
same result triue for solutions of the wave equation?

. Redo Example 1 in the text for the damped wave equation usy -+ 2ku; =

¢*(uxx + tyy). (CE. Exercise 6, §4.2.)

. Solve the wave equation (with general initial conditions) for a rectangular

membrane if one pair of opposite edges is held fixed (#(0,y,t) = u(l,y,) =
0) and the other pair is free (uy(x,0,t) = uy(x,L,) = 0). How do the
frequencies compare with those of Example 1?

. Let D be the rectangular box of Example 2. Suppose the faces z = 0 and

z = I3 are insulated, and the other four faces are kept at temperature zero.
Find the temperature u(x,y, z,f) given that u(x,»,z,0) = f(x,y). (Hint:
Since f is independent of z and the z-faces are insulated, you can treat this
as a 2-dimensional problem.)

. In Example 3, suppose /; = I = I3 = @ and p(x,y,2z) = x. What is the

potential u?

. Consider a cubic crystal lattice in which the charge density p(x,y, z) is 2/-

periodic in each variable. (We suppose that the lattice extends infinitely in
all directions; this is reasonable if its actual size is very large in comparison
with the length scale being studied.) Use Fourier series to find a periodic
solution of V2u = —47p, assuming that the net charge in any cube of side
2] is zero. (This assumption is generally valid in practice. Why is it needed
mathematically?) '

_—




